
UCRL-JRNL-208635

A Component Architecture for
High-Performance Scientific
Computing

D. E. Bernholdt, B. A. Allan, R. Armstrong, F. Bertrand, K. Chiu, T. L.
Dahlgren, K. Damevski, W. R. Elwasif, T. G. W. Epperly, M.
Govindaraju, D. S. Katz, J. A. Kohl, M. Krishnan, G. Kumfert, J. W.
Larson, S. Lefantzi, M. J. Lewis, A. D. Malony, L. C. McInnes, J.
Nieplocha, B. Norris, S. G. Parker, J. Ray, S. Shende, T. L. Windus, S.
Zhou

December 16, 2004

International Journal of High-Performance Computing
Applications

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

A Component Architecture for High-Performance Scientific

Computing

David E. Bernholdt1, Benjamin A. Allan2, Robert Armstrong2, Felipe Bertrand3, Kenneth

Chiu3, Tamara L. Dahlgren4, Kostadin Damevski5, Wael R. Elwasif1, Thomas

G. W. Epperly4, Madhusudhan Govindaraju6, Daniel S. Katz7, James A. Kohl1, Manoj

Krishnan8, Gary Kumfert4, J. Walter Larson9, Sophia Lefantzi10, Michael J. Lewis6, Allen D.

Malony11, Lois C. McInnes9, Jarek Nieplocha8, Boyana Norris9, Steven G. Parker5, Jaideep

Ray12, Sameer Shende11, Theresa L. Windus13, and Shujia Zhou14

Submitted to Intl. J. High Performance Computing Applications, ACTS Collection Special Issue

1Computer Science and Mathematics Division, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 37831
2Scalable Computing R & D, MS 9915, PO Box 969, Sandia National Laboratories, Livermore, CA 94551-0969
3215 Lindley Hall, Indiana University, 47405
4Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-365, Livermore, CA 94551
5Scientific Computing and Imaging Institute, University of Utah, 50 S. Central Campus Dr., Room 3490, Salt Lake City, UT 84112
6Department of Computer Science, State University of New York (SUNY) at Binghamton, Binghamton, NY 13902
7Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109
8Computational Sciences and Mathematics, Pacific Northwest National Laboratory, Richland, WA 99352
9Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439-4844

10Reacting Flow Research, MS 9051, PO Box 969, Sandia National Laboratories, Livermore, CA 94551-0969
11Department of Computer and Information Science, University of Oregon, Eugene, OR 97403
12Advanced Software R & D, MS 9051, PO Box 969, Sandia National Laboratories, Livermore, CA 94551-0969
13Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, P.O. Box 999, MS-IN: K8-91, Richland, WA 99352
14Northrop Grumman IT/TASC, 4801 Stonecroft Blvd, Chantilly, VA 20151

1

A Component Architecture for HPC 2

Corresponding Author:

David E. Bernholdt

Computer Science and Mathematics Division

Oak Ridge National Laboratory

P. O. Box 2008, MS 6016

Oak Ridge, TN 37831-6016 USA

Phone: +1 865 574 3147

Fax: +1 865 576 5491

Email: bernholdtde@ornl.gov

A Component Architecture for HPC 3

Abstract

The Common Component Architecture (CCA) provides a means for software developers to manage the com-

plexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance

computing. In the scientific computing context, component models also promote collaboration using independently

developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to

them. The CCA supports parallel and distributed computing as well as local high-performance connections between

components in a language-independent manner. The design places minimal requirements on components and thus

facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to

minimize the impact on application performance. The focus on high performance distinguishes the CCA from most

other component models. The CCA is being applied within an increasing range of disciplines, including combustion

research, global climate simulation, and computational chemistry.

A Component Architecture for HPC 4

1 Introduction

Historically, the principle concerns of software developers for high-performance scientific computing have centered on

increasing the scope and fidelity of their simulations, and then increasing the performance and efficiency to address the

exceedingly long execution times that can accompany these goals. Initial successes with computational simulations

have led to the desire for solutions to larger, more sophisticated problems and the improvement of models to reflect

greater levels of detail and accuracy. Efforts to address these new demands necessarily have included improvements to

scientific methodology, algorithms, and programming models, and virtually always each advance has been accompa-

nied by increases in the complexity of the underlying software. At the same time, the computer industry has continued

to create ever larger and more complex hardware in an attempt to satisfy the increasing demand for simulation capa-

bilities. These architectures tend to exacerbate the complexity of software running on these systems, as in nearly all

cases, the increased complexity is exposed to the programmer at some level and must be explicitly managed to extract

the maximum possible performance. In scientific high-performance computing, relatively little attention has been paid

to improving the fundamental software development process and finding ways to manage the ballooning complexity

of the software and operating environment.

Simultaneously, in other domains of software development, complexity rather than runtime performance has been

a primary concern. For example, in the business area the push has been less for increasing the size of “the problem”

than for interconnecting and integrating an ever-increasing number of applications that share and manipulate business-

related information, such as word processors, spreadsheets, databases, and web servers. More recently, with the fast

pace of the internet boom, the flood of new software technology used in business and commercial applications has

increased both the degree of interoperability desired and the number of applications and tools to be integrated. This

situation has led to extreme software complexity, which at several levels is not unlike the complexity now being seen

in high-performance scientific computing. For example, scientific codes regularly attempt the integration of multiple

numerical libraries and/or programming models into a single application. Recently, efforts are increasing to couple

multiple stand-alone simulations together into multi-physics and multi-scale applications for models with better overall

physical fidelity.

One of the approaches that the business/internet software community has found invaluable in helping to address

their complexity conundrum is the concept of component-based software engineering (CBSE). The basic tenet of

A Component Architecture for HPC 5

CBSE is the encapsulation of useful units of software functionality into components. Components are defined by

the interfaces that they present to the outside world (i.e., to other components), while their internal implementations

remain opaque. Components interact only through these well-defined interfaces, and based on these interfaces can be

composed into full applications. Using this methodology enables use of the “plug-and-play” software approach for

creating complex applications. The smaller, task-specific units of software are more easily managed and understood

than a complete application software structure. Logically, many components can provide functionality that is generally

useful in a variety of different applications. In such cases, suitably well-designed components might be reusable across

multiple applications with little or no modification. It is also possible that a number of different components can export

the same interface and provide the same essential functionality, but via different implementations, thereby allowing

these interoperable components to be swapped within an application in a plug-and-play fashion.

These ideas have spawned a number of component architectures, some of which have become so widely used as

to have reached “commodity” status: Microsoft’s Component Object Model (COM) [Microsoft Corporation, 1999],

the Object Management Group’s Common Object Request Broker Architecture (CORBA) Component Model [Object

Management Group, 2002], and Sun’s Enterprise JavaBeans [Sun Microsystems, 2004a].

While having proven quite popular and successful in the areas in which it originated, CBSE has made few inroads

into the scientific computing community. Part of the reason is that serious scientific applications tend to be large,

evolving, and long-lived codes whose lifetimes often extend over decades. In addition to a natural inertia that slows

the adoption of new software engineering paradigms by scientific software developers, current commodity component

models present a variety of issues ranging from the amount of code that must be changed and added to adapt exist-

ing code to the component environment, to performance overheads, to support for languages, data types, and even

operating systems widely used in scientific computing.

The Common Component Architecture (CCA) Forum was launched in 1998 as a grass-roots effort to create a

component model specifically tailored to the needs of high-performance scientific computing. The group’s goals are

both to facilitate scientific application development and to gain a deeper understanding of the requirements for and

use of CBSE in this community so that they can feed back into the development of future component models, in the

hope that eventually this community too may be adequately served by “commodity” tools. In the intervening years,

the Forum has developed a specification for the CCA as well as prototype implementations of many associated tools,

A Component Architecture for HPC 6

and the CCA is experiencing increasing adoption by applications developers in a number of scientific disciplines. This

paper updates our previous overview paper in 1999 [Armstrong et al., 1998] to reflect the evolution of the CCA and

our much more detailed understanding of the role of CBSE in scientific computing. We will discuss the special needs

of this community, and we will describe in detail the Common Component Architecture and how it addresses these

needs, as well as how it relates to other component models. We will provide some information about how scientific

applications are using the CCA now, and we will discuss open issues for CBSE development in this area.

2 Components for Scientific Computing

Component-based software engineering is a natural approach for modern scientific computing. The ability to easily

reuse interoperable components in multiple applications and the plug-and-play assembly of those applications have

significant benefits in terms of productivity in the creation of simulation software, especially when the component

“ecosystem” is rich enough that a large portion of the components needed by any given application will be available

“off the shelf” from a component repository. The simplicity of plug-and-play composition of applications and the fact

that components hide implementation details and provide more manageable units of software development, testing, and

distribution all help to deal with the complexity inherent in modern scientific software. Once the overall architecture

of a software system and interfaces between elements of it (components) have been defined, individual software

developers or small groups can then focus on the creation of the components of particular scientific interest to them,

while reusing software developed by others (often experts in their own domains) for other needed components of

the system. Componentization also indirectly assists with the performance issues that are so critical in this area by

providing the ability to swap components with different implementations that are tailored to the platform of interest.

Finally, components are a natural approach to handle the coupling of codes involving different physical phenomena

as well as different time scales and length scales, which is becoming increasing important as a means to improve the

fidelity of simulations.

In the scientific software world, CBSE is perhaps most easily understood as an evolution of the widespread practice

of using a variety of software libraries as the foundation on which to build applications. Traditional libraries already

offer some of the advantages attributed above to components, but a component-based approach extends and magnifies

the benefits. While it is possible for users to discover and use library routines that were not meant to be exposed

A Component Architecture for HPC 7

as part of the library’s public interface, component environments can enforce the public interface rigorously. It is

possible to have multiple instances (versions) of a component in a component-based application, whereas with plain

libraries, this is not generally possible. Finally, in a library-based environment, there are often conflicts of resource

management, programming models, or other dependencies, which are more likely as increasing numbers of libraries

are involved. With components, these concerns can often be handled by hooking up each “library” component to

components providing the resource management or programming model functionality.

The use of domain-specific computational frameworks is another point of contact between current practice in

scientific computing and CBSE. Domain-specific frameworks have become increasingly popular as environments in

which a variety of applications in a given scientific domain can be constructed. Typically, the “framework” provides a

deep computational infrastructure to support calculations in the domain of interest. Applications are then constructed

as relatively high-level code utilizing the domain-specific and more general capabilities provided by the framework.

Many frameworks support modular construction of applications in a fashion very similar to that provided by compo-

nent architectures but typically limited to the higher-level parts of the code. However, domain-specific frameworks

have their limitations as well. Their domain focus tends to lead to assumptions about the architecture and workflow

of the application becoming embodied in the design of the framework, making it much harder to generalize them to

other domains. Similarly, since their development is generally driven by a small group of domain experts, it is rare

to find interfaces or code that can be easily shared across multiple domain-specific frameworks. Unfortunately, this

situation is often true even with important cross-cutting infrastructure, such as linear algebra software, which could in

principle be used with common interfaces across many scientific domains. Generic component models, on the other

hand, provide all the benefits of domain-specific frameworks, but by casting the computational infrastructure as well

as the high-level physics of the applications as components, they also provide easier extension to new areas, easier

coupling of applications to create multi-scale and multi-physics simulations, and significantly more opportunities to

reuse elements of the software infrastructure.

However, scientific computing also places certain demands on a CBSE environment, some of which are not eas-

ily satisfied by most of the commodity component models currently available. As noted above, performance is a

paramount issue in modern scientific computing, so that to be acceptable in the community, a component model for

scientific computing would have to be able to maintain the performance of traditional applications without imposing

A Component Architecture for HPC 8

undue overheads. (A widely used rule of thumb is that environments that impose a performance penalty in excess

of ten percent will be summarily rejected by high-performance computing (HPC) software developers.) Commodity

component models have been designed (primarily or exclusively) for distributed computing and tend to use proto-

cols that assume all method invocations between components must be made over the network, in environments where

network latencies are often measured in tens and hundreds of milliseconds. This situation is in stark contrast to HPC

scientific computing, where latencies on parallel interconnects are measured in microseconds, and traditional program-

ming practices assume that on a given process in a parallel application, data can be “transferred” between methods by

direct reference to the memory location in which it lives. The performance overheads of the commodity component

models are often too high for scientific computing.

In scientific computing, it is common to have large codes that evolve over the course of many years or even decades.

Therefore, the ease with which “legacy” code bases can be incorporated into a component-based environment, and the

cost of doing so, are also important considerations. Many of the commodity component models may require significant

restructuring of code and the addition of new code to satisfy the requirements of the model.

Finally, also important to high-performance scientific computing are considerations including support for lan-

guages, data types, and computing platforms. The various commodity component models available may not support

Fortran or may require extensive use of Java, may not support arrays as first-class data types or complex numbers, and

may even be effectively limited to Windows-based operating systems, which are not widely used in scientific HPC.

The Common Component Architecture (CCA) was conceived to remedy the fact that a suitable component en-

vironment could not be found to satisfy the special needs of this community. Since its inception, the CCA effort

has grown to encompass a community of researchers, several funded projects, an increasing understanding of the

role of CBSE in high-performance scientific computing, a maturing specification for the CCA component model, and

practical implementations of tools and applications conforming to that specification.

3 The Common Component Architecture

Formally, the Common Component Architecture is a specification of an HPC-friendly component model. This spec-

ification also provides a focus for an extensive research and development effort. On the research side, the effort

emphasizes understanding how best to utilize and implement component-based software engineering practices in the

A Component Architecture for HPC 9

high-performance scientific computing arena, and feeding back that information into the broader component software

field. In addition to defining the specification, the development effort creates practical reference implementations

and helps scientific software developers use them to create CCA-compliant software, and ultimately, a rich market-

place of scientific components, thereby allowing new component-based applications to be built from predominantly

off-the-shelf scientific components.

3.1 Philosophy and Objectives

The purpose of the CCA is to facilitate and promote high-performance, high-quality, and more productive scientific

software development in a way that is as simple and natural as possible for scientific software developers. The CCA

intentionally has much in common with commodity component models but does not hesitate to do things differently

where the needs of HPC dictate (see Section 9 for a more detailed comparison). High performance and ease of use are

more strongly emphasized in the CCA effort than in commodity component models. However, in principal no barriers

exist to providing an HPC component framework based on commodity models, or to creating bridges between CCA

components and other component models, e.g., Web Services [Christensen et al., 2001; Foster et al., 2002].

The specific objectives that have guided the development of the CCA are:

1. Component Characteristics: The CCA is used primarily for high-performance components implemented in

the Single Program Multiple Data (SPMD) or Multiple Program Multiple Data (MPMD) paradigms. Examples

of issues that must be resolved to build applications of such components include the necessity to interact with

multiple communicating processes, the coexistence of multiple sophisticated run-time systems, message-passing

libraries, threads, and efficient transfers of large data sets.

2. Heterogeneity: Whenever technically possible, the CCA must be able to combine within one multi-component

application components executing on multiple architectures, implemented in different languages, and using dif-

ferent run-time systems. Furthermore, design priorities must be geared toward addressing the software needs

most common in HPC environment; for example, interoperability with languages popular in scientific program-

ming, such as Fortran, C, and C++, should be given priority.

3. Local and Remote Components: Components are local if they live in a single application address space (re-

A Component Architecture for HPC 10

ferred to as in-process components in some other component models) and remote otherwise. The interaction

between local components should cost no more than a virtual function call; the interaction of remote compo-

nents must be able to exploit zero-copy protocols and other advantages offered by state of the art networking.

Whenever possible local and remote components must be interoperable and be able to change interactions from

local to remote seamlessly. The CCA will address the needs of remote components running over a local area

network and wide area network; distributed component applications must be able to satisfy real-time constraints

and interact with diverse supercomputing schedulers.

4. Integration: The integration of components must be as smooth as possible. In general it should not be necessary

to develop a component specially to integrate with a particular framework, or to rewrite an existing component

substantially.

5. High-Performance: It is essential that the set of standard features contain mechanisms for supporting high-

performance interactions; whenever possible applications should be able to avoid extra copies, extra communi-

cation, and synchronization, as well as to encourage efficient implementations, such as parallel data transfers.

The CCA should not impose a particular parallel programming model on users, but rather allow users to continue

using the programming models with which they are most familiar and comfortable.

6. Openness and Simplicity: The CCA specification should be open, and it should be usable with open software.

In HPC this flexibility is needed to keep pace with the ever-changing demands of the scientific programming

world. Related and possibly more important is simplicity. For the target audience of computational scientists,

computer science is not a primary concern. An HPC component architecture must be simple to adopt, use, and

reuse; otherwise, satisfying any other objectives will be moot.

3.2 CCA Concepts

The central task of the CCA Forum (http://www.cca-forum.org) is the development of a component model

specification that satisfies the objectives above. The specification defines the rights, responsibilities, and relationships

among the various elements of the CCA’s component model as well as the interfaces and methods that control their

interactions. Briefly, the elements of the CCA model are as follows:

A Component Architecture for HPC 11

� Components are units of software functionality that can be composed together to form applications. Com-

ponents encapsulate much of the complexity of the software inside a black box and expose only well-defined

interfaces to other components.

� Ports are the abstract interfaces through which components interact. Specifically, CCA ports provide procedural

interfaces that can be thought of as a class or an interface in object-oriented languages, or a collection of subrou-

tines, or a module in a language such as Fortran 90. Components may provide ports, meaning they implement

the functionality expressed in the port (called provides ports), or they may use ports, meaning they make calls on

that port provided by another component (called uses ports). It is important to recognize that the CCA working

group does not claim responsibility for defining all possible ports. It is hoped that the most important ports will

be defined by domain computational scientists and standardized by common consent or de facto use.

� Frameworks manage CCA components as they are assembled into applications and executed. The framework

is responsible for connecting uses and provides ports without exposing the components’ implementation details.

The framework also provides a small set of standard services that are available to all components. In order to

reuse concepts within the CCA, services are cast as ports that are available to all components at all times.

3.3 Overview of the CCA Specification

Formally, the CCA specification is expressed as a set of abstract interfaces [CCA Forum, 2003] in the Scientific

Interface Definition Language (SIDL) [Dahlgren et al., 2004, Chapter 3] used by the Babel language interoperability

tool (discussed in depth in Section 4), which implicitly defines bindings to the various languages Babel supports. The

current CCA specification is version 0.6.3, and it uses the SIDL namespace gov.cca.

Central to the CCA specification is the Services interface, which is the primary means by which components

interact with the framework, allowing the component to inform the framework of port interfaces that the component

intends to use or provide. The Services object also permits the component to avail itself of other services that the

framework may provide, such as information about connections between itself and other components, or the ability to

instantiate and otherwise manipulate other components.

Services provides methods to declare what ports the component will provide and use (addProvidesPort(),

removeProvidesPort(), registerUsesPort(), unregisterUsesPort()), making it possible for the

A Component Architecture for HPC 12

CCA framework to effectively mediate port connections in applications. These methods are most often used when the

component is instantiated by the framework, but can also be used at other times. Services also includes the methods

that allow a user to get a handle to a port in order to make method calls on it (getPort(), getPortNonblocking(),

releasePort()). These latter methods are generally used in the main code of a component, bracketing regions of

code where calls are made to methods on a port provided by another component. A recent addition to the Services

interface is the ability to register a callback that the framework will invoke immediately prior to destroying the com-

ponent (registerForRelease()). This capabiity provides the component an opportunity perform any special

cleanup operations that might be necessary, though in practice, we find that relatively few components need to avail

themselves of this capability and its use is completely optional.

This Services mechanism differs from other component models (e.g., CORBA CCM[Object Management

Group, 2002]) that require components to implement all functionality of the component model within the compo-

nent itself. In the CCA, we have begun simply and augment the Services specification with more methods as the

need arises. Since Services is the responsibility of the framework, extending the Services interface with new

methods does not break existing component code. Components can later take advantage of new features as part of

their normal development process.

To be a CCA-compliant component, it is necessary to implement the CCA’s Component interface, which specifies

just one method, setServices(). When the component is instantiated in a CCA framework, the first thing the

framework does is invoke the component’s setServices() method, passing in an object of type Services,

and this generally is where the component registers the ports it uses and provides. This definition of the Component

interface is part of the CCA’s minimalist approach – the number of new methods required to become a CCA component

(sometimes referred to as surface area [Szyperski, 1999]) is as small as possible: exactly one.

At the user level, components are both typed and given individual identifiers. Both are strings, with the type being

conventionally the SIDL class name of the component, and the identifier being at the discretion of the user assembling

the application, with the requirement that it be unique within the application. Internally to the CCA framework,

components are identified by unique opaque component IDs, which can be obtained through the ComponentID

interface.

As with components, CCA ports are identified by a type and name, both strings. By convention, the type is set to

A Component Architecture for HPC 13

the SIDL interface name of the port, and the name must be unique within the component. The functions that register

ports also accept a TypeMap (a map containing key/value pairs of any basic SIDL data type) specifying properties for

the port. The Services interface also includes a getPortProperties() method to retrieve this information.

To implement a CCA port, it must inherit from (or extend) Port, which serves only as a container and has no required

methods. Components may provide multiple ports, and even multiple instances of the same port.

In addition to defining the general CCA port mechanism, the CCA specification also defines a number specific

ports. GoPort, BasicParameterPort, and ParameterPortFactory are specified conveniences for com-

ponent writers, to standardize some basic operations. The GoPort, with its go() method (with no arguments), is

a specific type of port that frameworks and application assembly GUIs can recognize as a means to initiate an op-

eration in the component (i.e., start the application). The other two ports facilitate the implementation of user- and

component-accessible interfaces to set input/control parameters that components might need to operate.

The CCA reuses this port mechanism to export services provided by the framework. The only difference between

a framework-provided service port and a port provided from a connected component is availability: the framework

service port is always available, while the port from a connected component can be obtained only after a connection has

been made. CCA-defined ports, such as ConnectionEventService,BuilderService,AbstractFramework,

and ComponentRepository are services that all frameworks are required. ConnectionEventService pro-

vides a means for components to find out when connections are made and broken. ComponentRepository is cur-

rently a placeholder for a planned interface that will allow component implementations to be retrieved from distributed

repositories. BuilderService and AbstractFramework provide a means to programmatically assemble and

modify applications (instantiate and destroy components, make and break connections between ports), and the means

for arbitrary code to become a CCA framework. These services not only provide the basis for application builder GUIs

to be easily constructed, but also allow dynamic behavior of the application itself, for example, swapping components

based on numerical or computational performance [Hovland et al., 2003; Norris et al., 2004; Bernholdt et al., 2004].

BuilderService also enables encapsulation of assemblies of components so that they can be treated as a single

component. This capability facilitates managing the complexity of large component-based applications and also facil-

itates the assembly of multi-scale or multi-physics simulations, where complex applications representing a particular

length scale or type of physics can be encapsulated and treated as a single component, exposing only a limited number

A Component Architecture for HPC 14

Figure 1: A schematic representation of how ports
are connected and used through a sequence of interac-
tions between a component and framework via the CCA
Services object.

of ports.

Exactly which ports and components are connected and in what way is mediated by the framework (see below),

which in turn is controlled by a script or interactively by the user. Because ports are nothing more than interfaces,

components that reside in the same process — as they almost always do in the HPC case — have direct access to

methods, just as one would in a scientific subroutine library. Except for usually negligible overhead from the presence

of virtual function calls, directly connected components have the same performance as their non-componentized coun-

terparts. This means that once the component composition phase of an application is finished, an application created

from CCA components has performance characteristics that are little different from that of non-component code.

3.4 Component Lifecycle

Figure 1 illustrates more specifically how ports are connected and used through a sequence of interactions between a

component and framework via the CCA Services object. In Step 1, Component 1 calls addProvidesPort()

(and Component 2 calls registerUsesPort()) to express their intent. Then in step 2, the CCA Services object

caches the information about the port that it received from addProvidesPort(). In the third step, the framework

connects the uses port to the provides port, and the framework copies information about the provides port to the

user’s (Component 2’s) CCA Services object. Finally, when Component 2 wants to invoke a method on the port

provided by Component 1, it issues a getPort() call to obtain a handle to the port. Not shown in the diagram is

the releasePort() call, which informs the framework that the caller is (temporarily) done using the port. A port

may be used only after a getPort() call has been made for it, and before its companion releasePort() call;

getPort() and releasePort() can be used repeatedly throughout the body of the component. This approach

A Component Architecture for HPC 15

is considered better CCA programming practice than acquiring handles to all relevant ports once at the beginning

of the component execution and releasing them only at the end, as it allows the use of a more dynamic component

programming model.

Finally, when not within a getPort()/releasePort() block, connections between uses and provides ports

may be broken and reconnected, and components may be destroyed. In general, components cannot use ports on other

components during the composition phase (e.g., within the component’s setServices() routine) because there is

no guarantee that the components providing those ports have been instantiated and connected to this component’s uses

port. Framework service ports are always available and can be used at any time.

The framework and the CCA model do not require that all uses ports declared by a component be connected to

provides ports. While there are many cases in which this is an error (akin to a traditional application not being linked to

a library it needs), it also provides a useful flexibility to the component developer. For example, needed functionality

might be provided by any of several different ports, and this approach allows the component to check which are

available (i.e., connected) and use the best one. Or some uses ports might be considered optional by the component

developer – to be used if present, but if not, the component should continue without failing. Examples might include

an optimization component that will make use of the function’s Hessian (second derivatives) if connected to a port

providing it, but will otherwise use an internally computed approximate Hessian, or a component that will send its text

output to another component if connected (perhaps one that collects and annotates the output of a parallel application

with information about the originating process) but simply will use stdout if not connected.

In everyday use of the CCA model, steps 1–3 above would take place during the composition phase of the ap-

plications. Specifically, steps 1 and 2 would take place with the component’s setServices(), invoked by the

framework when the component is instantiated, and step 3 would take place as the component instructs the frame-

work how to connect the uses and provides ports for the application. Step 4 would take place during execution of the

component’s code.

While this explanation has portrayed the phases of the lifecycle as collective, with the entire application being as-

sembled, executed, and then disassembled, this is not necessarily the case. As mentioned above, the BuilderService

framework service port allows all lifecycle operations to be done under the programmatic control of any component.

This behavior allows the component to proxy the behavior of the framework (e.g., to recover the concept of a “main”

A Component Architecture for HPC 16

program, which otherwise is not part of a general component model like the CCA) but is considered advanced use. The

developer of such a component must be keenly aware of the CCA rules and practices governing component behavior

to ensure that all components in the application “see” the expected CCA environment.

4 Language Interoperability

Multi-language programming is a fact of life in scientific computing, making programming language interoperabil-

ity an important issue that the CCA is addressing. Scientific applications often contain combinations of compiled

languages, such as C, C++, Fortran 77 and Fortran 90/95, and scripting languages, such as Perl, Python and Tcl. An

informal survey of scientific coding groups, mostly from DOE labs, found that the average project used more than three

computer languages [Kumfert and Epperly, 2002]. Furthermore, as the community builds more CCA-compliant com-

ponents, from scratch and legacy codes, there is every reason to expect the trend toward multi-language applications

to continue to grow.

Unfortunately, the task of getting codes written in different programming and scripting languages to interoperate

can be quite burdensome if there is no native support in one or more of the languages. Historically, developers have

had to write code by hand to “glue” multi-language applications together, most commonly in a pairwise fashion. As a

result, changes that impacted the interfaces between the languages had to be reflected in changes to the glue code. As

the number � of supported languages increased, the language interoperability burden increased � � .
This maintenance nightmare has led to a number of efforts to ameliorate the problem. For example, Simplified

Wrapper and Interface Generator (SWIG) [Beazley, 2003] is a tool that enables interactions among a select group of

languages. SWIG allows code written in Perl, Python, Ruby and Tcl to call software written in C or C++, but it does

not enable C/C++ to call Perl, Python, Ruby or Tcl.

Rather than rely on the current norm of pairwise interoperability between a few languages, the CCA has adopted

the use of a tool that reduces the language interoperability burden on component developers and users. This tool, called

Babel [Lawrence Livermore National Laboratory, 2004], reduces the burden from � � to
� � . Babel is able to substan-

tially reduce the interoperability effort through the use of an intermediate object representation (IOR) implemented in

ANSI C [Dahlgren et al., 2004]. Currently, Babel supports C, C++, Fortran 77, Fortran 90/95, and Python. Actually

Babel is a “standalone” tool in that it can be used outside of the Common Component Architecture environment.

A Component Architecture for HPC 17

Babel is an interface definition language (IDL)-based tool that automatically generates code to glue multi-language

components together. It relies on the Scientific Interface Definition Language (SIDL) [Dahlgren et al., 2004] for the

definitions of calling interfaces through defined types (i.e., interfaces and classes) and declared methods. A SIDL

interface is a collection of methods that cannot be implemented directly. A SIDL class is also a collection of methods

which, in this case, can be implemented so that associated objects can be created. An exception is made for abstract

classes whereby one or more of the methods are not implemented so objects of the class cannot be created. Interfaces

and classes are grouped together in packages to provide a namespace for symbol name collision prevention. Using

a SIDL file, the Babel compiler generates the glue to enable caller and callee to be in any supported language. The

generated glue code handles the translation of arguments and method calls between languages.

Like similar technologies such as CORBA [Object Management Group, 2002] and COM [Microsoft Corporation,

1999], Babel provides the standard hallmarks of object-oriented programming, such as object identity, inheritance,

polymorphism, and encapsulation, in all supported languages even when the features are not native to the language. In

fact, Babel’s inheritance model is analogous to that of Java [Gosling et al., 1996]. A SIDL class can extend, or inherit

from, at most one class and can implement an arbitrary number of interfaces. Single inheritance of classes was chosen

to avoid the confusion of multiple inheritance. Interfaces can extend multiple interfaces. With Babel, it is possible

to implement each level of a type hierarchy in a different language. This is inherent in Babel’s object model because

all classes specified in SIDL, regardless of their language of implementation, implicitly extend the SIDL base class,

sidl.BaseClass, which is implemented in C.

What makes Babel and SIDL different from other IDL-based tools, such as CORBA and COM, is that they are

being tailored for use in the scientific computing community. For example, SIDL has built-in support for scientific

data types, including complex types and dynamically allocated, multi-dimensional, arbitrarily strided arrays.

Furthermore, having the IOR implemented in ANSI C has several benefits of importance to the community. First,

it enables the generation of glue code that will support fast, single-process communication, which is important to many

of today’s applications. Second, using ANSI C increases the portability of the glue code across high-end platforms.

Finally, Babel supports Fortran as a first class language. This is important because Fortran is largely ignored by most

of the computing world these days, including most of the commodity component models. However, it has a large

following in scientific computing, particularly among application developers. Babel provides native Fortran 90/95

A Component Architecture for HPC 18

array access to Babel’s internal array data structure using the CHASM array descriptor library [Rasmussen et al.,

2003; Rasmussen et al., 2001]. Providing native access to array descriptors is challenging because array descriptor

internals are usually compiler specific and undocumented.

Since component technologies are an evolutionary step beyond object-oriented programming, the CCA has been

able to leverage Babel and SIDL in the development of its component framework. The CCA specification is written

in SIDL, and component developers write SIDL files to describe their ports and the classes that use or provide those

ports. Using SIDL enables the encapsulation of implementation details of CCA-compliant components. Wrapping

the CCA framework in SIDL makes it a relatively simple exercise to create Python components serving as application

drivers, GUIs, and other tasks for which scripting languages are often used in traditional programming environments

[Kumfert, 2003].

Benefits of Babel technologies include its environment, programming language support scalability, and potential

as a basis for future research. Babel is a portable, language independent, object-oriented programming environment

that enables the CCA to incorporate components written in the most common scientific programming languages.

Furthermore, it provides a scalable approach to support new languages as they rise to prominence. Other advantages

include the ability to leverage the tools themselves to facilitate scientific computing research in areas such as remote

method invocation, specification-level parallelism, and dynamic code insertion. More information about current efforts

on these research areas can be found in Section 15.

5 Fine-Grained Component Interactions

As mentioned previously, one of the major requirements of the Common Component Architecture is that it impose

minimal performance overheads on both local component interactions and component-based parallel applications.

While not explicit in the CCA specification, the design of the CCA makes it possible for straightforward implementa-

tions of the specification to obtain high performance in both contexts.

In the CCA specification, the framework mediates all connections between uses and provides ports. This approach

makes it possible for CCA implementations to transparently support both distributed and local connection models.

In the distributed case, the getPort() invocation would return a pointer to a proxy for the provides port provided

locally by the framework, and the framework itself would be responsible for conveying the method invocations to the

A Component Architecture for HPC 19

actual remote port (see Section 7).

In the local case, CCA implementations generally load components into the same process so that they share the

same memory space, while putting them into different namespaces to preserve the separations expected between

components. In this case, getPort() can simply return a pointer to the virtual function table for the port, thereby

allowing methods on the port to be invoked directly (without further intervention by the framework), and allowing data

to be passed by reference if desired. The CCA term for this approach is direct connection. In component models, most

of which were designed primarily with distributed computing in mind, direct connection optimizations would violate

the component model’s specifications. Some CORBA ORBs provide a less efficient collocation optimization, which

does maintain compatibility with the component model [Schmidt et al., 1999].

Experiments have shown that the overheads for calls between directly connected CCA components are small and

quite manageable in the context of scientific computing [Bernholdt et al., 2002b; Norris et al., 2002; Benson et al.,

2003a]. Calls using simple data types (those requiring no translation by Babel) cost the equivalent of a C++ virtual

function call, which is exactly what is to be expected for the direct connection implementation described above. For

those unfamiliar with C++, this is roughly three times the cost of a function call in Fortran or C, or about 50 ns on a

500 MHz Pentium III system. For comparison, the same test with the omniORB CORBA implementation on the same

platform required approximately twenty-six times longer.

Of course there are data types that require more effort on Babel’s part to translate from one language to another

– effort that varies depending on the two languages being connected. For example, nearly every language represents

strings differently, so it is generally necessary to allocate memory and copy for every string argument. Babel also

allows the user to specify that arrays always be in a fixed order (row- or column-major), and between some language

pairs must allocate and copy the entire array to maintain the specified ordering. However, for general scientific com-

puting, it is not difficult to avoid most overheads associated with componentization in the CCA model, or to amortize

them by doing a sufficient amount of computational work for each function invocation. The advice given to developers

of CCA-based applications is to be aware of the costs and factor them into the overall design of the application and

the design of the individual components and interfaces.

A Component Architecture for HPC 20

6 Parallel Components

The CCA’s approach to supporting high-performance parallel computing is guided primarily by the “Integration”

objective of Section 3.1. The simplest approach to integrating existing parallel code in a CCA environment is to accept

whatever parallel programming model was used in the original code, rather than trying to impose a new CCA-specific

one. This approach offers a number of additional benefits. First and foremost, software developers can continue to take

advantage of the investment they have made in learning how to produce high-performance software in their favorite

programming model. We believe that for many users, this capability is as important as the more obvious fact that our

approach requires a minimal modification to existing code. In addition, the CCA does not require yet another parallel

programming model, which greatly simplifies the task of implementing a CCA-compliant environment.

There are a variety of CCA framework implementations that vary in their support for parallel and distributed com-

puting. At present, a given framework supports either HPC parallel or distributed computing, and parallel plus dis-

tributed applications must be assembled from pieces running in different frameworks, using the BuilderService

and AbstractFramework services defined in the CCA specification. As discussed further below, we expect to

move toward higher degrees of integration and transparency in the coupling of parallel and distributed applications.

For now, however, we focus on the current situation with respect to parallel and distributed computing.

Figure 2: A schematic representation of the CCA par-
allel programming environment in the single compo-
nent/multiple data (SCMD) paradigm. Different parallel
processes are labeled P0. . . P3, and the same set of three
components has been loaded into each process. Com-
ponents in the same process (vertical dashed box) inter-
act using standard CCA port-based mechanisms, while
parallel components of the same type (horizontal dotted
box) interact using their preferred parallel programming
model, such as MPI, PVM, Global Arrays, etc.

P0 P1 P2 P3

Ccaffeine [Allan et al., 2003; Allan et al., 2002], the main CCA framework implementation for HPC parallel

computing, supports the component analogs of both the single program/multiple data (SPMD) and multiple pro-

gram/multiple data (MPMD) models, to which we refer as single or multiple component/multiple data (SCMD,

MCMD) models. Figure 2 depicts the SCMD case: each process is loaded with the same set of components wired to-

gether in the same way. Interactions among components within a given process (vertical direction) take place through

A Component Architecture for HPC 21

the normal CCA means — by declaring used and provided ports and using getPort()/releasePort() around

calls on other ports. Interactions across a component’s parallel cohort (parallel instances of the same component,

the horizontal direction in the figure) take place via whatever parallel programming model that component wishes to

use. Different components within the same application may use different parallel programming models (with certain

caveats, discussed below). “Diagonal” interactions (between component A on one process and component B on an-

other process) are not prohibited by the CCA, but require a degree of coordination that may not be consistent with the

notional independence of components (unless a componentization has been carried to a degree that groups of closely

intertwined components are used to carry out certain operations).

Figure 3: A schematic representa-
tion of the CCA parallel program-
ming environment in the multiple
component/multiple data (MCMD)
paradigm. Different parallel pro-
cesses are labeled P0. . . P3. Some
components are loaded into all pro-
cesses (top two rows), while others
(bottom two rows) are loaded only
into subsets of the processes (Group
A and Group B).

Components only on
process group B Group B

Components on all
processes

Application driver & MCMD
support component

P0 P1 P2 P3

Framework

Components only on
process group A

Group A

Legend

In the MCMD case (Figure 3), some components are typically loaded into all processes, while others are loaded

only into subsets of the processes. An example of an MCMD application might be a coupled global climate model,

where atmospheric, oceanic, land, and other elements of the model are run simultaneously on different subsets of the

available processes. These separate elements are managed by a driver component and supported by other components

to handle the data exchange between the various elements. In contrast to the atmospheric, oceanic, and other elements,

the management and support components are loaded into all processes of the simulation. Because of the complex-

ity of partitioning up the process space and of launching parallel jobs with different inputs or executables on every

process, MCMD applications can perhaps be most easily created through the use of the CCA’s BuilderService

framework service from a so-called builder component. This component, which might conveniently be written in

a scripting language, such as Python, would compute the desired partition of the available processes and then use

BuilderService on each process to load and connect the appropriate set of components. The builder would then

A Component Architecture for HPC 22

end by invoking the GoPort on the climate model’s driver component to initiate the simulation.

Ccaffeine also supports threaded parallelism, with the caveat that on each process, only the main thread is al-

low to interact with the framework to manage connections between components. The SCIRun2 framework [Zhang

et al., 2004] is fully thread-safe, thus allowing combinations of MPI-based and thread-based parallelism within the

same component. However, neither of the systems yet provides mechanisms for managing use of resources in an

environment where more than one multi-threaded component is competing for processing resources.

1 2 4 8 16
0

20

40

60

80

100

120

Number of Processors

Ti
m

e
(s

ec
)

Components
TAO

(a) Total execution time

0

10

20

30

40

50

60

70

80

90

100

Problem Size

Ti
m

e
(s

ec
)

Linear Solver Component
PETSc SLES

100x100 150x150 200x200 250x250

(b) Cumulative linear solver time

Figure 4: Component overhead in an unconstrained minimization application on a 250 � 250 mesh: (a) total nonlinear
solution time (b) linear solution time.

The simplicity of the CCA approach to parallel computing offers another significant advantage besides the ease of

incorporating existing parallel software into the CCA environment: the performance of parallel components is virtually

identical to that of the original code. The only overheads imposed by the CCA model of parallelism are those on the

local component interactions, which, as discussed in the previous section, are small, and quite managable. A number

of studies have verified this experimentally:

� Norris and coworkers [Norris et al., 2002] have compared a CCA component implementation and a non-

component library implementation of a nonlinear unconstrained minimization problem solved using an inexact

Newton method with a line search [Norris et al., 2002]. Each iteration of the Newton method requires function,

gradient, and Hessian evaluations, as well as an approximate solution of a linear system of equations. The over-

A Component Architecture for HPC 23

head of the component implementation results from the extra layer of abstraction (more virtual function calls)

and is most significant for very small problem sizes. The parallel performance results on 1 to 16 processors

of a Linux cluster also demonstrate that the SPMD component implementation does not adversely affect par-

allel performance and scalability. Figure 4 compares the component and non-component costs for the overall

minimization simulation and the linear solve phase.

� Katz, Tisdale and Norton [Katz et al., 2002] constructed a simple component-based two-dimensional parallel

unstructured Adaptive Mesh Refinement (AMR) application and compared it with the library on which the

component was based. Repeated timings (5–10 runs each) on between 2 and 32 processes showed no effect

on the parallel scalability of the application and essentially no difference in run times (some runs showed the

library version slightly faster, while for others the component version was slightly faster).

� Benson et al. [Benson et al., 2003a] analyzed the performance of a molecular optimization problem [Hoare,

1979] similar to the one described in Section 13.3. This application used a two-dimensional Lennard-Jones

potential together with the Toolkit for Advanced Optimization (TAO) [Benson et al., 2001; Benson et al., 2003b]

for the optimization and Global Arrays (GA) [Nieplocha et al., 1996; Pacific Northwest National Laboratory,

2004a] for the linear algebra. Tests were performed with up to 65,536 atoms on up to 170 processors to evaluate

the overhead of the CCA component version with respect to the non-component library-based version of this

application, and the largest overhead found was less than 0.2% of the total execution time (Figure 5).

Figure 5: Measured overhead as
a percentage of execution time for
component- vs. library-based imple-
mentations of a Lennard-Jones en-
ergy optimization problem.]

% Overhead using CCA Component

0

0.05

0.1

0.15

0.2

0.25

1 4 16 32 64 128 170

of procs

%
 o

ve
rh

ea
d

% Overhead

A Component Architecture for HPC 24

The simplicity of the CCA approach to parallel computing also brings with it some issues and possible disad-

vantages that must be mentioned. First, the programming models (and specific implementations) used in the various

components assembled into an application must be “composable”, or able to work together without interference. In

many cases, this issue does not really pose a problem. For example, MPI [Forum, 1994], PVM [Geist et al., 1994], and

the Global Array Toolkit [Pacific Northwest National Laboratory, 2004a; Nieplocha et al., 1996] can coexist together

without problems thanks to their compatible execution environments. On the other hand, connecting an MPI-based

component to one based on OpenMP is unlikely to produce the desired result without careful thought, and perhaps

additional programming. While the composition of parallel programming models in a single application is perhaps

more likely to occur in a component environment than in traditional application development, this issue is in no way

specific to component environments and is outside the scope of the CCA.

In addition, although SIDL bindings exist for MPI, PVM, and Global Arrays, no parallel programming model

has yet been formally componentized in the CCA environment. This situation means that they must be treated as

traditional libraries, which raises certain subtle issues in a component environment. Basically, whether the parallel

programming (or other) library is linked to the component instead of the framework itself, and whether the linkage is

static or dynamic, affect whether each component sees the same parallel environment or a completely separate instance

of it [Bernholdt et al., 2002a]. In most cases, the desired result of a shared parallel environment requires that the library

be linked into the CCA framework, which is a minor inconvenience (in so far as the framework build must be modified

to include the libraries required by the application(s) of interest), and begs the question of who takes responsibility

for initializing and finalizing such libraries. The present solution is that the framework is also responsible for these

actions, which has proven adequate so far. In principle, they could be moved into a component, but MPI, for example,

requires the application’s command line arguments for its intialization procedure, which in turn suggests the need for

a standardized means by which components can obtain from the framework a copy of the commandline arguments.

Finally, for any programming model that provides support for multiple contexts, code is much more flexible and

much more easily reused when written to accept an externally determined context rather than use the default global

context (such as MPI’s COMM WORLD). This is advice often given to those programming in message-passing environ-

ments (and just as often ignored, it seems), which can become all the more important in component environments,

particularly for components that might be used in the MCMD fashion.

A Component Architecture for HPC 25

7 Distributed Components

Although historically high-performance scientific computing has focused primarily on local sequential and parallel

computing, there is an increasing interest in distributed computing, shadowing the rise of the Internet, web-based

“application service providers”, and Grid computing [Foster and Kesselman, 1998]. The CCA’s design objectives

(Section 3.1) include support for both parallel and distributed computing approaches. The primary distinction between

the two paradigms, as far as the CCA is concerned, is whether or not it is possible for components to be directly

connected, sharing memory within the same process. As described above, such direct connection is the primary means

by which CCA environments can assure the highest possible local/parallel performance; in distributed computing, the

emphasis is less on performance (though efficient protocols are still important) than on flexibility and the ability to

integrate with existing distributed computing standards and environments. Beyond this, the integration of the HPC

parallel and distributed paradigms within a single component-based environment is an interesting and challenging

research issue.

Distributed computing environments raise a number of issues that differ from those in the direct-connect parallel

paradigm:

� Component Interaction: When components cannot be directly connected because they are in separate pro-

cesses, generally in disjoint address spaces, it is necessary for the framework to mediate calls on ports through

mechanisms such as remote method invocation (RMI) [Sun Microsystems, 2004b], remote procedure calls

(RPC) [Birrell and Nelson, 1984], or message passing [Forum, 1994]. Numerous such systems are available

(and new ones continually being developed), which offer a range of performance and capability. In each sys-

tem, there is a specialized representation for “handles” to the ports and services of components which must be

designed as globally unique references to point to objects in remote address spaces. Often these handles are

designed as objects that can function as proxies for remote objects.

� Registration and Discovery: This is the term for the mechanisms that allow components to make their availabil-

ity known and to find each other so that they can cooperate within the same application. Though this capability

is necessary for both local/parallel and distributed computing, in the former case, very simple solutions are quite

effective: components are typically loaded from pre-specified locations on a (shared) file system into a single

A Component Architecture for HPC 26

framework instance. In the distributed case, one cannot count on shared file systems, or even ones that have sim-

ilar structure, and the CCA framework itself must execute in distributed fashion, so that component co-location

cannot be the basis of discovery. Registration and discovery (R&D) mechanisms are very much influenced by

the integration of the CCA into broader distributed computing environments and the mechanisms they use for

R&D.

For example, in an Open Grid Services Architecture (OGSA) [Foster et al., 2002] or Web Services-based en-

vironments, components can be described by Web Services Description Language (WSDL) documents [Chris-

tensen et al., 2001], and registered and discovered in registries such as the Lightweight Directory Access Proto-

col (LDAP) [OpenLDAP Foundation, 2003] and Universal Description, Discovery, and Integration (UDDI) [UDDI.org,

2003]. For Legion-based environments [Grimshaw et al., 1999; Lewis et al., 2003], components have names

in a globally accessible context-space, and can be discovered and filtered based on where they are running, to

which class they belong, their creator, and a range of other component attributes.

� Component Creation: In a distributed environment, the creation of components needed for an application

typically involves remote resources, whereas in a local/parallel situation the resources are local, and typically

pre-allocated (for example by a queuing system). Distributed frameworks must therefore support dynamic

remote creation and placement (i.e., scheduling) that respects the security (authentication and authorization)

requirements of the component, the application, and the supporting environment.

Given the ranges of issues and options for addressing them, including choices of a number of well-established

distributed computing environments into which CCA’s CBSE approach might be integrated, it will not be surprising

that there are currently several distributed CCA frameworks supporting a range of capabilities.

7.1 XCAT

XCAT (version 2.0) [Govindaraju et al., 2003] is a CCA-based distributed component framework that uses the Web

Services model as its basic architecture. It has been implemented in both C++ and Java, and provides interoperability

between components developed in these two languages. Each provides port in an XCAT component is described using

an XML schema and is designed as a Web Service that has one port type. The XCAT team is currently working on

using a WSDL [Christensen et al., 2001] document for this purpose. WSDL documents will provide a description of

A Component Architecture for HPC 27

the interface and also provide information pertaining to the communication protocols to which the service is bound.

The use of WSDL for XCAT components will enable the use of well known Web service client toolkits to invoke

methods on XCAT provides ports.

Component creation and launching mechanisms on remote locations are based on Globus GRAM via the Java CoG

kit [von Laszewski et al., 2001]. For components in the same address space, XCAT has a in-built mechanism that is

optimized for co-location optimization. Communication among components is enabled by the XSOAP [Slominski

et al., 2001] toolkit, which provides an elegant model based on the Java-RMI (Remote Method Invocation) specifi-

cation [Sun Microsystems, 2004b]. The Java based implementation of XSOAP and XCAT use the dynamic proxy

feature of Java. This feature allows the generation of stubs and skeletons dynamically.

While the XCAT API can be used directly in programs for composition of applications using the component

assembly model, the program must be recompiled whenever the component wiring is modified. XCAT also provides

a binding to Jython (an implementation of Python in Java) [Anonymous, 2003] that can be used to access the XCAT

API, thereby enabling scientists to change their application composition without the need for recompilation. This

approach also has the added advantage of launching applications from web-portals. Recent work with XCAT has

also focused on the design of Open Grid Services Infrastructure (OGSI) [Global Grid Forum, 2003] compatible CCA

components [Krishnan and Gannon, 2004].

7.2 SCIRun2

SCIRun2 (version 1.90) [Zhang et al., 2004] is a framework that combines CCA compatibility with connections to

other commercial and academic component models. Based on the SCIRun[Parker and Johnson, 1995; Johnson and

Parker, 1995; Parker et al., 1997] infrastructure and the CCA specification, SCIRun2 utilizes parallel-to-parallel remote

method invocation to connect components in a distributed memory environment, and it is multi-threaded to facilitate

shared memory programming. SCIRun2 also has an optional visual-programming interface. Overall, this framework

provides a broad approach that will allow scientists to combine a variety of tools for solving a particular problem. The

overarching design goal of SCIRun2 is to provide the ability for a computational scientist to use the right tool for the

right job, a goal motivated by the needs of our biomedical and other scientific users.

The primary innovative design feature of SCIRun2 is a meta-component model that facilitates integration of a

A Component Architecture for HPC 28

number of classes of tools from various, previously incompatible systems. In the same way that components plug

into CCA or other component-baed systems, SCIRun2 allows allow entire component models to be incorporated

dynamically. Through this capability, SCIRun2 facilitates the coupling of multiple component models, each of which

can bring together a variety of components. We are utilizing this feature to enable the coupling of single-address-

space components based on Babel (see Section 4), components from SCIRun, as well as CCA components that use

the SCIRun2 distributed computing infrastructure. Special components, called bridges, facilitate interactions between

components belonging to different models. These bridges can be automatically or semi-automatically generated.

The SCIRun2 framework enables a variety of distributed computing mechansisms to be used together. Natively,

SCIRun2 provides support for RMI-based distributed objects. This support is utilized in the core of the SCIRun2

framework in addition to distributed components. Using the SIDL language, we compile proxy objects that marshal

method calls to remote objects and manage distributed references. For objects that exist within the same address space,

this marshalling framework is completely bypassed, making fine-grained component interactions possible with only

the cost of a C++ virtual function call. For distributed components, the SCIRun2 framework employs a remote slave

framework that manages component creation, registration and discovery on a remote, possibly parallel, computing

resource. We extend the SIDL language and build upon the SCIRun2 RMI system to implement parallel-to-parallel

component connections, discussed further in Section 12.

7.3 Legion

Legion is an object-based Grid computing system [Grimshaw et al., 1999; Lewis et al., 2003]. The Legion CCA frame-

work [Lewis et al., 2003] makes use of the Legion object model and run-time system for implementing components.

Legion objects contain their own address space, are named by Legion Object Identifiers (LOID’s) that have meaning in

a global namespace and are instances of class objects, which serve as their managers at runtime. Currently, each CCA

component maps to its own Legion object and therefore has its own address space. Components make calls on others

in the CCA framework by invoking methods on the Legion objects that represent them. Programmers specify CCA

components using SIDL, and a stub generator produces wrapper code that allows each component to communicate

with the others in a Legion-based framework. Programmers fill in port definitions and compile the code into a Legion

object that can then run in the Legion-CCA framework as a component.

A Component Architecture for HPC 29

Each component is linked with both the Legion runtime library and a CCALegion library, which delivers the

services required by the CCA specification. For example, the library furnishes an interface for registering and obtaining

provides and uses ports, for instantiating components via a BuilderService, and for maintaining a table of connections

to other components. Many of the library’s functions require outcalls to remote services, but the interface to the

component programmer is provided as a local API. This approach keeps programming components that are intended

to run in a distributed environment as similar to programming local components as possible.

Legion provides services that cover all of the distributed computping issues raised at the beginning of this section.

Thus, implementing a particular service is a matter of mapping the CCA request onto the Legion implementation. For

example, component creation is realized by invoking the createInstance()() function in the Legion library,

which in turn calls the CreateInstance()() method exported by the appropriate class object. Component inter-

action is implemented on top of the Legion messaging system, which supports remote method invocation. In addition,

registry and discovery service, although not currently implemented, will be able to take advantage of Legion context

space.

7.4 Distributed Interoperability

Interoperability among distributed frameworks differs significantly from other kinds of interoperability and requires an

additional specification that is not a contract between the framework and the component, but rather a contract among

frameworks. Some of the capabilities required for interoperability among distributed CCA frameworks include:

� Common Communication Protocols: Before two components can communicate, there must be some agree-

ment on the protocols they use. For example, they may choose to use to something based on the SOAP [Gudgin

et al., 2003] standard being developed by the W3C.

� Common Remote Reference Format: To connect a uses port to a provides port, there must be some way to

refer to the provides port. To connect a uses port from one framework to a provides port of another, the ports

must have a common reference format.

� Common Creation Protocol: The current CCA specification provides a BuilderService to be used for creating

components. A ComponentID is returned upon successful instantiation of the component. In a distributed

A Component Architecture for HPC 30

framework, once a component has been instantiated, the BuilderService and the new component need to interact

so that the ComponentID can be returned. This interaction requires an additional protocol above that used for

basic communication.

� Common Connection Protocol: When two components are connected, a reference of the provides port is

placed in the uses port of the other component. In a distributed framework, the reference to the provides port

may belong to a component in a different framework. Different frameworks must agree upon the set of RPC

calls and on-the-wire format of parameters that will be needed to place a reference to the provides port in the

uses port. Note that this protocol is layered above the common communication protocols.

Part of the ongoing research activity in the distributed CCA effort is aimed at establishing the full requirements

for distributed framework interoperability and determining the most effective way to specify each aspect for inclu-

sion in the formal CCA specification. Rather than “blessing” specific protocols for each capability, we anticipate an

environment that allows frameworks to negotiate among multiple supported options for each capability.

8 Current Status of the Common Component Architecture

Although active research and development of the Common Component Architecture continue, a variety of tools are

available that provide a highly functional environment for the development and use of CCA-compliant components

and applications. Indeed, a number of applications groups have already begun using these tools to develop components

and component-based applications, as described above.

Although the CCA Specification, currently at version 0.6.3, continues to evolve and mature, most of the recent

changes have either been clarifications or the addition of capabilities that are considered advanced, and therefore

rarely employed by typical users. For mainstream use, the CCA specification has been largely stable for the last several

years. Backward compatibility of the specification as it evolves is not currently a requirement, although the impact on

user code is carefully considered before changes are made. For example, the recently added ComponentRelease

interface was one of three alternatives proposed to provide the desired capability, and was chosen in large part because

it had the least backward compatibility problems.

The Babel language interoperability tool, currently at version 0.9.0, is independent of the CCA Specification, but

A Component Architecture for HPC 31

Table 1: Summary of versions and capabilities of core CCA tools as of 31 January 2004.
Category Name Version Capabilities
CCA Specification 0.6.3
Language Interoperability Babel 0.9.0 Supports C, C++, FORTRAN 77,For-

tran 90/95, Python
Language Interoperability Chasm 1.0.1 Used by Babel for Fortran 90 array support.
Framework Ccaffeine 0.4.3 Local direct-connect and parallel computing

(SCMD and MCMD paradigms)
Framework XCAT 2.0 Local direct-connect and distributed comput-

ing compatible with Grid- and web-services
approaches

Framework Legion-CCA 0.3 Distributed computing compatible with the
Legion environment

Framework SCIRun2 1.90 Local direct-connect, MPI/threaded parallel,
and distributed computing

along with the specification, is a major dependency for CCA framework implementations. Babel has been evolving

fairly rapidly, including the addition of Fortran 90 support within the last year, but backward incompatible changes are

announced in advance and discussed within the user community, often influencing the implementation time line. The

Babel team has defined a draft set of criteria for the version 1.0.0 release, which include guarantees of longer-term

stability.

The final core tool in the CCA environment is a framework. As we have described, there are a number of CCA-

compliant frameworks currently available for use (and others which are primarily research vehicles). The primary

frameworks, their versions, and their capabilities are summarized in Table 1. Frameworks depend on specific versions

of both the CCA specification and Babel, and consequently tend to evolve at a pace guided by releases of those

tools. Because of the complexity of supporting multiple (incompatible) versions of specifications and Babel, the CCA

frameworks tend to be closely tied to specific releases of these other tools.

A variety of secondary or more specialized tools for the CCA environment are also available or under development.

These include tools which automate much of the relatively mechanical work of setting up the “skeleton” of the files

required to create ports and components, graphical “application builder” interfaces which connect to CCA frameworks,

and tools which facilitate the “componentization” of existing software.

A Component Architecture for HPC 32

9 Related Work

As has been discussed, the CCA is a component model specialized to meet the needs of the high-performance scientific

computing community. While we are aware of no other effort targeting this particular group, we mention in relation to

this work a variety of other component models, as well as other tools and environments that facilitate the development

of large-scale scientific software.

When considering other component models, probably the most relevant ones to cite are the commodity com-

ponent models, particularly CORBA CCM [Object Management Group, 2002]; Microsoft(TM) COM, DCOM and

.NET [Box, 1997]; Microsoft(TM) Visual Basic [Liberty, 2003]; JavaBeans [Englander, 1997]; and Enterprise Jav-

aBeans [Roman, 1997]. As a group these models were conceived without high-performance computing in mind and

usually restrict the user to a platform that is not conducive to HPC. Java components are restricted to the Java plat-

form, and COM/DCOM/.NET are, as a practical matter, restricted to Microsoft operating systems. Neither of these

platforms is often associated with high-performance computing. There have been serious efforts to use CORBA in

a high-performance setting with mixed results [Keahey, 1996; Schmidt et al., 1996; Denis et al., 2003; Denis et al.,

2001]. Commodity component models usually focus on generality and flexibility, and their designs do not emphasize

performance in the sense that an HPC simulation developer would define it. The time scales for commodity component

models are more often based on human perceptions and reaction time, which is roughly five orders of magnitude too

slow for modern parallel computers. However, it is important to emphasize that the CCA considers long-term compat-

ibility with commodity component models important. Indeed, the design of the CCA owes much to these component

models, especially CORBA.

In the HPC scientific computing area, perhaps the most relevant comparisons can be made to the variety of popular

domain-specific applications frameworks (see Section 2). Cactus [Allen et al., 2000] predates the CCA and originally

grew out of the relativistic astronomy community. To this day, it is still fostered by that community but is being

generalized to a more multi-purpose framework. The Earth System Modeling Framework (ESMF) [Killeen et al.,

2003] is a similar effort, targetted to global climate simulation (see Section 13.2.2). Both have a predefined data model,

specific to their application area, which is shared by all of the participating components. The means of component

composition is execution order: each component has a “run” or “exec” method that is called in a sequence of the

user’s choosing. In both cases there are specializations to their application area that will not be detailed here. Cactus

A Component Architecture for HPC 33

and ESMF both rely on an execution engine (sometimes referred to as a “flow executive” [Anonymous, 2004]) that

is orchestrated by their respective frameworks, while the CCA relies entirely on port composition; execution order

and timing are left to the way components use their ports. A third peer component model, Palm/PRISM [Guilyardi

et al., 2002], also relatively new, incorporates both of these ideas. While Palm is a generic component framework,

PRISM is a specialization dedicated to climate simulation. These have a concept similar to ports, where components

are composed by matching typed data structures that flow between components. In addition, Palm has a flow executive

that schedules the activation of components during the calculation.

Beyond peer component models, there are packages that are simply labeled “libraries” or “frameworks”. Hypre [Chow

et al., 1999; Falgout et al., 2003], Overture [Brown et al., 1999; Henshaw et al., 2002], PETSc [Balay et al., 1997;

Balay et al., 2003], POOMA [Reynders et al., 1996; Reynders et al., 2001], and Trilinos [Heroux et al., 2003; Heroux

et al., 2004] are all object-oriented class libraries that do not embrace the peer component methodology. The goal

of these software packages is to make HPC program construction and execution easier, often in a specific problem

domain, e.g., numerical solution of partial differential equations (PDEs). Their approaches are to provide a variety of

numerical method implementations (Hypre, PETSc, Trilinos) or to define high-level abstractions for solving a particu-

lar kind of problem (Overture, POOMA). None of these packages aims to provide a specification for a general-purpose

peer component model.

10 Using the CCA

Although the CCA effort is, in many respects, rather young, the CCA specification and basic tools associated with

the CCA environment are sufficiently stable and robust that a wide range of groups are already beginning to use

the Common Component Architecture in their software development efforts. The resulting activities range from the

creation of components and interfaces encapsulating important capabilities for scientific computing, or for particular

scientific domains, to the development of complete component-based scientific applications.

The development of individual components and interfaces for scientific computing is an important activity because

it enriches the pool of available components upon which others may draw to assemble their applications. These activ-

ities are often carried out in conjunction with the development of a specific application, where developers recognize

that particular components may be of broader interest, or by those associated with existing numerical or scientific

A Component Architecture for HPC 34

libraries who wish to make their tools available in the CCA environment. CCA applications are typically built from a

combination of more general, reusable components together with some constructed specifically for the application in

question.

It is impossible to convey here the full breadth of work already in progress which utilizes the CCA environment;

however, since the ultimate goal of the CCA effort is to change the way scientific software is developed, this overview

of the Common Component Architecture would be incomplete if it did not at least present a overview of how the CCA

is being used.

In the remainder of this section, we describe the general process of adapting existing code into the CCA environ-

ment, or of architecting a “from scratch” component-based application. Section 11 gives an overview of some of the

interface and standalone component development activities, followed in Section 12 by a more in-depth description of

an important CCA research activity to facilitate the development of coupled simulations. Finally, in Section 13 we

sample the diversity of CCA-based application development.

10.1 Architecting Component-Based Software

Scientific simulation codes have traditionally been expert solutions combining a set of numerical algorithms, and

physical and mathematical models to solve a specific set of problems. In traditional scientific software development

approaches, these models and algorithms are integrated under a common design and generally tightly integrated us-

ing common data structures. Their identification as “modules” in an overall solution strategy, however, is typically

straightforward.

Whether component-based or not, the natural decomposition of an application is often recursive in nature and

intuitive to practitioners in the field. For example, in a multi-physics code, such as global climate simulation, disparate

physics are governed by separate sets of partial differential equations (PDEs), and the first stage of decomposition is

typically to distinguish among the different physics (i.e., atmosphere, ocean, etc.). These are further decomposed based

on the general numerical procedures required: solvers, domain discretizations, physics subassemblies, etc. A third step

of decomposition of such a problem typically involves implementing the details of the specific equations (in physics

modules), mathematical processes, or numerical algorithms. Pervasive data structures and operations associated with

them can often be encapsulated into data objects (in the sense of object-oriented programming) used by many modules

A Component Architecture for HPC 35

of the application.

Componentization might naturally occur at any of these levels of decomposition (and at different levels in different

parts of the application), and may evolve as the application architects and developers modify their requirements, find

new opportunities for code reuse, or wish to generalize parts of the code. A coarse-grain decomposition has the attrac-

tion of simplicity in defining interfaces and interactions and is often the first step in componentizing an application.

However, this approach tends to offer fewer opportunities for code reuse because implementation details (the third

stage of decomposition, above) are typically mixed into the higher-level science drivers. Finer-grain decompositions

allow for better separation of details of specific physics equations and numerical algorithm choices, making them more

amenable to reuse and easy replacement within the application. However, what one gains in flexibility and reusability,

one may lose in terms of simplicity. Such approaches require sophisticated users who understand the tools individually

as well as their interactions with other tools. This dilemma is not unique to the CCA. Other component-like toolkits

(e.g., AVS, Matlab, LabView) present similar issues.

In architecting a component-based application, the interfaces between components become a key element of the

design. Interface design is in many respects a social issue – a primary point of cooperation among developers. Depend-

ing on the requirements, interfaces may be designed with varying degrees of generality, ranging from being specific

to a group of components or a particular application, to being useful across a range of applications developed by mul-

tiple research groups and possibly across multiple scientific domains. Clearly the level of effort required to develop

an interface scales with its intended generality. However, as is the case with some widely used numerical libraries

(i.e., BLAS, LAPACK, and others), the payoff can be high in terms of overall productivity for a more general interface

capable of supporting many applications and a variety of implementations. Another aspect of interface design, espe-

cially when componentizing existing code, is the opportunity to redesign the interface. In most cases, an interface to

a CCA component can be a straightforward translation of the original software’s interface in to SIDL. However, some

researchers find that the componentization step is an opportunity to redesign the interface based on experience with

the original, and use a somewhat thicker wrapper to adapt the new interface to the existing code within the component.

It is also important to realize that different aspects of a simulation may naturally lend themselves to different ways of

accessing the functionality of a component. This can be provided by a component having multiple ports implementing

related interfaces. For example, a component that manages unstructured mesh data may have a port for entity-based

A Component Architecture for HPC 36

access to the mesh and another for array-based access, with the former providing full capability but lower performance

due to the generality of the data model used, while the latter would provide high-performance access to more limited

functionality.

10.2 Componentizing Existing Software

Once the component architecture has been determined and the interfaces among components specified, it is necessary

to implement the components themselves. The CCA specification is designed to make it as easy as possible to adapt

exiting code into components. For most scientific codes, the basic strategy is as follows:

1. Write the wrappers that adapt the source code generated from the SIDL interface definitions to the interfaces in

the existing code. The complexity of this step depends on how close the SIDL interface is to the original.

2. Add the code required to interact with the CCA framework, specifically, the setServices() method, by

which the component tells the framework what ports it provides and uses. If the component requires a signal

from the framework that it is about to be destroyed, so that it can perform cleanup operations, the ComponentRelease

interface must also be implemented.

3. Modify existing tightly coupled implementations containing direct method calls to access the same functionality

through ports. This involves adding getPort() and releasePort() calls and modifying the original

method call to use the port handle returned by getPort() and comply with the new interface. Some adaptation

of internal data objects may be necessary in order to use them as arguments in calls on other ports (for example,

a native array being adapted to a SIDL array via the borrow() call). As with the wrappers in step one, the

extent of modification required will depend on the granularity of componentization and on how close the new

interfaces are to the existing ones.

11 Reusable Scientific Components and Interfaces

Before we can begin to realize our vision of interoperable computational science components, we must address many

difficult research issues. We employ a two-pronged approach to scientific component development, namely (1) defin-

ing domain-specific interface specifications and (2) developing a suite of parallel scientific components. All this work

A Component Architecture for HPC 37

is in collaboration with applications scientists and domain specialists, with whom we are also exploring research issues

including quality of service issues related to robust, efficient, and scalable performance.

11.1 Common Interface Development

The development of common interfaces that a large number of tools support is critical to the notion of plug-and-play

scientific computing. Common interfaces are especially important for scientific data components, as the interfaces for

numerical tools and application components often include a certain degree of specificity of the data structures used as

input and output arguments. We are working with domain experts in the Terascale Simulation Tools and Technologies

(TSTT) [Glimm et al., 2001] and APDEC [Colella, 2003] groups to develop common interfaces for two broad areas of

scientific data components, namely interfaces for structured, unstructured, and adaptive mesh access and a descriptor

for dense arrays distributed across the processors of a parallel computer. These data-centric components will define the

parallel layout of data across processors and form the lingua franca for other components that manipulate the data. We

are also working in conjunction with the Terascale Optimal PDE Simulations (TOPS) [Keyes, 2004] group to define

component interfaces for linear, nonlinear, and optimization solvers. In addition, we engage the high-performance

scientific community at large to participate in similar dialogs in their particular areas of expertise.

11.2 High-Performance Components

We have developed (internally and through collaboration) high-performance production components that are used in

scientific applications as well as prototype components that aid in teaching CCA concepts. A common theme in

this work is combining application-specific components, as introduced in the previous sections, with more general-

purpose ones that can be reused across a range of applications. These freely available components include vari-

ous service capabilities, tools for mesh management, discretization, linear algebra, integration, optimization, parallel

data description and redistribution, visualization, and performance evaluation. We have also developed a variety of

component-based scientific applications that demonstrate component reusability and composability, including several

that employ domain-specific interfaces being defined by CCA working subgroups for scientific data and parallel data

redistribution. Several of these applications implement PDE-based models using either adaptive structured meshes or

unstructured meshes, while others solve unconstrained minimization problems that arise in computational chemistry.

A Component Architecture for HPC 38

These components and applications, many of which are available as Linux RPMs via http://www.cca-forum.

org/software.html, serve as part of CCA tutorial material and provide a starting point for interfaces in sev-

eral scientific applications. This software has been developed on a strong foundation in the form of rich parallel

tools that already used abstractions in their design, including CUMULVS [Kohl and Geist, 1999; Geist et al., 1997],

Global Arrays [Nieplocha et al., 1996; Pacific Northwest National Laboratory, 2004a], GrACE [Parashar et al., 2004],

CVODES [Hindmarsh and Serban, 2002], MPICH [Argonne National Laboratory, 2003], PETSc [Balay et al., 2003;

Balay et al., 1997], PVM [Geist et al., 1994], and TAO [Benson et al., 2001; Benson et al., 2003b]. A partial list of

components follows.

11.2.1 Utilities and Services

� Services in Ccaffeine. B. Allan, R. Armstrong, S. Lefantzi, and E. Walsh (SNL), M. Govindaraju (Binghamton).

The CCA specification treats framework services exactly like CCA components except that the port that embod-

ies the service is always connected to the component. A number of such services are available in the Ccaffeine

framework. The parameter port service is the most commonly used, and it allows components to have param-

eters set on them interactively by a user. Another service allows the connection of the original “classic” (C++

only) ports to Babel components, thereby accommodating legacy CCA software. Additional utility services

include permitting a component to access MPI, to receive connection events, and to establish its own interactive

window with a user.

� Performance Observation. S. Shende and A. Malony (University of Oregon), C. Rasmussen and M. Sottile

(LANL), and J. Ray (SNL). The TAU (Tuning and Analysis Utilities) performance observation component (ver-

sion 1.1) provides measurement capabilities to components, thereby aiding in the selection of components and

helping to create performance aware intelligent components; see [Shende et al., 2003; Ray et al., 2003b] for

further details. This component is currently used in combustion applications discussed in Section 13.1, and fu-

ture plans include incorporation into a variety of other simulations, including the quantum chemistry application

discussed in Section 13.3, to provide comprehensive inter- and intra-component performance instrumentation,

measurement and analysis capabilities.

A Component Architecture for HPC 39

11.2.2 Data Management, Meshing, and Discretization

� Global Arrays. M. Krishnan and J. Nieplocha (PNNL). Many scientific applications rely on dense distributed

arrays. The Global Array (GA) library [Nieplocha et al., 1996; Pacific Northwest National Laboratory, 2004a]

provides an extensive set of operations on multidimensional dense distributed arrays. A rather unique capability

is the support in GA for the shared memory programming model, where arrays can be accessed as if they were

located in shared memory. This is accomplished based on the one-sided communication operations that trans-

fer data between local memory of the calling processor and the arbitray sections of distributed/shared arrays.

We developed a GlobalArray component that provides interfaces to full capabilities of GA, including the

data- and task- parallel operations. This component provides three ports: GlobalArrayPort, DADFPort

and LinearAlgebraPort. GlobalArrayPort offers interfaces for creating and accessing distributed ar-

rays. These interfaces are intended to support the collection of global information and creation of GlobalArray

objects. All details of the data distribution, addressing, and data access are encapsulated in the GlobalArray

objects. The LinearAlgebraPort provides core linear algebra support for manipulating vectors, matrices,

and linear solvers. Some of the linear algebra operations are implemented internally, and others are provided

through interfaces to third-party parallel linear algebra libraries such as ScaLAPACK [Blackford et al., 1997].

DADFPort offers interfaces for defining and querying array distribution templates and distributed array descrip-

tors following the API proposed the CCA Scientific Data Components Working Group. The GlobalArray

component is currently used in applications involving molecular dynamics and quantum chemistry, as discussed

in Sections 6 and 13.3; further details are in [Benson et al., 2003a].

� TSTTMeshQuery. L. F. Diachin (LLNL). This component is a prototype of an unstructured, triangular mesh

component that supports the TSTT mesh query interface [Glimm et al., 2001] for access to node and element

geometry and topology information; opaque tags support user-defined data; further information is in [Norris

et al., 2002]. This interface is sufficient to implement linear, finite-element discretization for diffusion PDE

operators. This component will be expanded to several TSTT-compliant mesh components built from existing

DOE software that support a wide range of two and three-dimensional meshes. Such components will be used

to demonstrate the utility of interchangeable and interoperable meshing infrastructures in the solution of PDE-

based applications.

A Component Architecture for HPC 40

� FEMDiscretization. L. F. Diachin (LLNL). This component provides linear, finite-element discretizations

for commonly used PDE operators and boundary conditions. It currently employs unstructured triangular

meshes through the TSTTMeshQuery component and provides matrix and vector assembly routines to cre-

ate linear systems of equations in simple PDE-based applications; see [Norris et al., 2002] for details. The

FEMDiscretization component approximates advection and diffusion operators as well as Dirichlet and

Neumann boundary conditions with either exact or Gaussian quadrature. This component uses the TSTTMeshQuery

and LinearSolver ports. This interface is expected to evolve as the TSTT discretization library is devel-

oped, and this prototype component will be replaced with a more sophisticated variant that supports multiple

discretization schemes and mesh types. Such components will used to demonstrate the utility of interchangeable

and interoperable discretization strategies in the solution of PDE-based applications.

� GrACEComponent. J. Ray (SNL). This component discretizes a domain with a SAMR mesh and implements

regriding to preserve resolution and load-balance the mesh. As a wrapper around the GrACE library [Parashar

et al., 2004] developed by M. Parashar of Rutgers University, GrACEComponent takes care of all the geometric

aspects of the mesh (size and location of patches, their resizing due to regriding, and their placement on processes

for load-balancing). This component also serves as a factory for a “Data Object” that contains data on all the

patches. The data object takes care of message passing for ghost cell updates. This component is used in the

combustion applications discussed in Section 13.1, and will continue to evolve to incorporate the latest GrACE

features.

� HODiffusion and SpatialInterpolations. C. Kennedy and J. Ray (SNL). These components use an underly-

ing Fortran 77 library developed by C. Kennedy that implements higher-order (orders 2 – 8) finite difference

stencils, including both first and second derivatives. HODiffusion supports both symmetric and skewed sten-

cils for collocated and staggered output and calculates higher order diffusion fluxes using these stencils. The

SpatialInterpolations component supplies the prolongation and restriction operators between SAMR

patches at two adjacent levels of refinement, where the order of interpolation has to be commensurate with the

spatial discretization in HODiffusion. These components currently handle diffusion transport subassembly

in the combustion applications discussed in Section 13.1; future plans include continued testing on hierarchical

grids.

A Component Architecture for HPC 41

11.2.3 Integration, Optimization, and Linear Algebra

� CvodesComponent. R. Serban (LLNL). This component includes ports both for a generic implicit ODE integra-

tor (OdeSolverPort) and for an implicit ODE integrator with sensitivity capabilities (OdeSolverSPort).

CvodesComponent is based on CVODES [Hindmarsh and Serban, 2002] and is used for chemistry integra-

tion in the combustion applications discussed in Section 13.1.

� TAOSolver. S. Benson, L. C. McInnes, B. Norris, and J. Sarich (ANL). This component implements a simple

OptimizationSolver interface for unconstrained and bound constrained optimization problems; see [Nor-

ris et al., 2002] and [Benson et al., 2003a] for details. The underlying optimization solvers are provided by

the Toolkit for Advanced Optimization [Benson et al., 2001; Benson et al., 2003b] and include Newton-based

methods as well as limited-memory variable-metric algorithms that require only an objective value and first

order derivative information. TaoSolver employs external components for parallel linear algebra, where

current support includes both Global Arrays and PETSc. TaoSolver is used within applications involving

molecular geometry optimization and molecular dynamics, which are further discussed in Sections 6 and 13.3.

TaoSolver is the basis for an evolving optimization solver component that will employ linear algebra inter-

faces under development within the TOPS group.

� LinearSolver. B. Norris (ANL). This component provides a prototype port for the solution of linear systems.

These interfaces are in the process of evolving to support common interfaces for linear algebra that are under

development within the TOPS group. Future work will include transitioning this component, as well as others

such as TaoSolver and FEMDiscretization, to use the new TOPS interfaces, so that they can easily

benefit from the full suite of linear algebra software available within the TOPS center.

11.2.4 Parallel Data Description, Redistribution, and Visualization

� DistArrayDescriptorFactory. D. Bernholdt and W. Elwasif (ORNL). This component provides a uniform means

for applications to describe dense multi-dimensional arrays and is based upon emerging interfaces from the CCA

Scientific Data Components Working Group.

� CumulvsMxN. J. Kohl, D. Bernholdt and T. Wilde (ORNL). This component builds on CUMULVS [Kohl and

A Component Architecture for HPC 42

Geist, 1999; Geist et al., 1997] technology to provide an initial implementation of the MxN parallel data redis-

tribution interfaces that are under development by the CCA MxN Working Group. CumulvsMxN is designed

to span multiple CCA frameworks and to pass data between two distinct parallel component applications. See

Section 12 for further information.

� ParticleCollectionFactory. J. Ray (SNL) and J. Kohl (ORNL). This component is a prototype for doing MxN

parallel data redistribution on combustion data for use in post-processing in the combustion applications dis-

cussed in Section 13.1. The ParticleCollectionFactory component imitates a patch on a SAMR grid

as a “particle,” which can then be employed for data redistribution and post-processing. Future plans include

increasing the robustness of the code and using it in off-machine, concurrent post-processing.

� VizProxy J. Kohl and T. Wilde (ORNL). This component provides a companion MxN endpoint for extracting

parallel data from component-based applications and then passing this data to an external front-end viewer for

interactive graphical rendering and exploration. Variants provide general-purpose components for interactive

visualization of data based on structured meshes as well as unstructured triangular meshes; support for particle-

based data is under development. Using the CUMULVS viewer library and protocols, a variety of commercial

and public domain visualization tools can be utilized at the front-end user interface [Wilde et al., 2002; Wilde

et al., 2003]. Currently provided front-ends include a simple 2D “slicer” viewer and a 3D viewer for AVS 5;

additional viewers are under development for VTK, AVS/Express and the CAVE.

12 M � N Parallel Data Redistribution

As parallel simulations are increasingly coupled together to form complex multi-physics and multi-scale applications,

developers face a growing need to be able to efficiently manage the movement of distributed data from one simulation

component to another. Typically, the sending and receiving sides in such coupling utilize different distributions of

data across their parallel environments, and when such coupled simulations are run in a multiple program/multiple

data paradigm, even the number of parallel processors on each side may well be different (say M and N processes,

respectively). The CCA refers to this as the “M � N parallel data redistribution” problem, illustrated in Figure 6.

Solving the M � N problem is a complex and tedious programming task, which involves determining the mapping

A Component Architecture for HPC 43

Figure 6: A schematic of an M � N parallel data redis-
tribution problem. In this case, M=8 and N=27, and the
dark patches illustrate the fact that data originating on a
single processor may be redistributed across many pro-
cessors on the receiving end.

of data between the source and destination data decompositions (often referred to as the communication schedule) and

then efficiently implementing a custom all-to-all communication using this schedule. At present, the M � N coupling

in most such applications is done in an application-, or at least domain-specific fashion, limiting the type of data

distributions supported and other aspects of the problem. Often, separate M � N couplers are created for each pair of

models coupled in a multi-physics simulation, with no generalized or reusable solutions.

In so far as a component-based environment is intended to facilitate, among other things, the development of large

coupled simulations, the development of a more general approach to the M � N problem is an important research area

within the CCA effort. Our long-range view of this research bridges applications, components, interfaces, and the

core CCA environment. We are starting with the development of interfaces and component-based implementations

that provide a generalized M � N capability, which applications can call to affect the transfer of data from one group of

components to another. Another approach involves integrating the mechanics of this data redistribution directly into

the CCA framework, thereby removing from the user the need to explicitly invoke the data transfers. This approach

can also be generalized into “parallel remote method invocation” (PRMI), in which not only are data redistributed

among disparate process groups, but method invocations themselves are coordinated between distinct groups of par-

allel processes. Finally, we also look beyond “simple” data redistribution toward ways of generalizing the additional

processing that often takes place at the interfaces between coupled simulations, such as mesh interpolation, time or

spatial averaging, unit conversion, and various other filtering operations. Here we provide an overview of the current

status of progress toward general component- and framework-based M � N capabilities.

A Component Architecture for HPC 44

12.1 M � N Interfaces and Component Implementations

The CCA Forum’s M � N Working Group has developed a prototype interface specification for an M � N component.

This effort has drawn heavily on experiences with two particular tools that offer fairly general M � N-like capabilities,

based on libraries rather than components: CUMULVS [Kohl and Geist, 1999; Geist et al., 1997; Kohl, 1997; Kohl

and Papadopoulos, 1995] and PAWS [Keahey et al., 2001; Beckman et al., 1998]. These tools utilize complementary

models of parallel data sharing and coupling. PAWS is built on a “point-to-point” model of parallel data coupling,

with matching “send” and “receive” methods on corresponding sides of a data connection. CUMULVS is designed

for interactive visualization and computational steering, and so provides protocols for persistent parallel data channels

with periodic transfers, using a variety of synchronization options.

The current M � N interface therefore allows the specification of both “one-shot” and “persistent” periodic data

transfers and is structured to allow for “third-party” control of a data redistribution connection. This possibility min-

imizes the modifications necessary for the sending and receiving components to make them “M � N aware.” The

minimal changes involve only providing a descriptor of their parallel data distribution for each data object of interest,

and then “instrumenting” the simulation code with calls to the M � N component’s dataReady() method at points

where the data is in a “consistent” state globally. Such points in the computation occur where it would be appropriate

to transfer data to the recipient, or at points where it would be appropriate for the recipient to accept new data, respec-

tively. Control over the the details of the connection – how often data exchange occurs, or even whether it occurs at

all, can all be placed into a third component if desired.

Implementations of the prototype M � N interface have been built on top of both CUMULVS and PAWS, and they

have been used in a number of models and actual scientific simulations. This experience, together with that from

significant application- or domain-specific M � N implementations (see for example the Distributed Data Broker and

Model Coupling Toolkit discussed in Section 13.2) and other related efforts (i.e., Chaos [Lee and Sussman, 2004;

Edjlali et al., 1997; Ranganathan et al., 1996]) are now being assessed as part of an effort to refine the interface

specification and create more general and more efficient implementations.

A Component Architecture for HPC 45

12.2 Framework-Based M � N

Although the component-based M � N capability is powerful, it can also be somewhat cumbersome to use, since it

requires users to modify their code and explicitly manage the transfers. A much more user-friendly approach, which

is also being actively pursued in the CCA, is to subsume the M � N data transfer capabilities into the CCA frame-

work (i.e., as an optional CCA service) and make the framework responsible for ensuring that data is appropriately

redistributed when method calls are made that require it.

Framework-based M � N possibilities raise a number of issues. One is the fact that the framework must some-

how obtain data distribution information for the sending and receiving data objects. A logical approach, which has

been used in the past (see [Keahey and Gannon, 1997]), is to introduce such information into the interface defini-

tion. Research using Utah’s SCIRun2 CCA framework extends the SIDL language with primitives for parallel data

redistributions and also parallel remote method invocation. A modified version of Babel parses the extended SIDL

specifications and generates appropriate glue code to handle the data redistribution when method invocations are made

[Damevski, 2003].

A second issue, alluded to above, is the fact that the framework-based approach extends the problem from “simple”

data redistribution to parallel remote method invocation. An extremely challenging and complex research task is both

the specification and implementation of an environment in which arbitrary subsets of M processes can, in parallel,

invoke methods on arbitrary subsets of N processes, including the ability to designate the appropriate redistribution

for all of the method arguments. In addition to the aforementioned work using SCIRun2, with PRMI directives in

the SIDL, researchers at Indiana University have developed DCA [Bertrand and Bramley, 2004], an experimental

distributed CCA framework based on MPI, as a tool to explore PRMI in greater detail.

13 Scientific Applications

The groups adopting the Common Component Architecture environment for the development of their applications do

so for a variety of reasons. For example, they may be particularly interested in the black-box nature of components

to facilitate the creation and evolution of a computational toolkit. They may need more efficient and flexible ways to

assemble complex coupled simulations or want to refactor code to make it more modular. They may be interested in

A Component Architecture for HPC 46

increasing interoperability with other similar applications in the same scientific domain. Alternatively, they may want

to more easily leverage software developed by experts in other domains.

In this section, we present overviews of CCA-based application development activities in the areas of combus-

tion simulation, global climate modeling, and quantum chemistry. These simulations illustrate the diversity of CCA

applications and reasons for adopting CBSE for scientific computing.

13.1 Combustion Modeling

One of the most successful implementations of the CCA paradigm to date is in combustion modeling. The endeavor,

which started in 2001 within the context of the SciDAC-funded [U. S. Dept. of Energy, 2003] Computational Facility

for Reacting Flow Science (CFRFS) project [Najm et al., 2003], seeks to create a facility for the high fidelity simulation

of flames, involving realistic physical models, nonlinear PDEs, and a spectrum of time and length scales. Given the

complexity of the problem and the multiplicity of physical and mathematical models required for the task, a component

based approach was clearly indicated. CCA was chosen primarily for its high performance and simplicity.

The target is the modeling of combustion problems defined in simple geometries, i.e., logically rectangular do-

mains, employing structured adaptively refined meshes (SAMR). Evolution in time of the flow quantities (e.g., density,

momentum, temperature, species concentrations, etc.) is governed by a set of nonlinear PDEs, which have the general

form: �	�
��
����� ����������������������� ���! � �"�#� (1)

where
�

is the vector of flow variables at a given mesh point. Numerically,

involves the variables only at the same

mesh point, while � involves spatial derivatives which are computed using finite difference or finite volume schemes

and consequently depend upon the mesh point and its close neighbors. The dependence of � on neighboring points

requires that steep variations of
�

be fully resolved in scattered time-evolving regions of the domain, which is usually

achieved by increasing the grid density locally. The SAMR technique that we employ overlays a uniform coarse

mesh on the domain and dynamically generates a mesh hierarchy of rectangular patches with different grid densities,

based on an error threshold suitably defined to capture the errors caused by the coarseness of the mesh during the

computation. Physically, for the reacting flow systems described by Equation 1, � expresses diffusion and convection

in the flow, and

expresses the chemically reacting source terms of the flow.

A Component Architecture for HPC 47

In order to design a component-based software infrastructure to model reacting flow systems, one needs to consider

and classify two aspects of the simulation: the physics of the system and the numerical scheme that will be employed.

This classification determines the software subsystems of the infrastructure, that is, collections of components that

embody specific physical or numerical functionality. For the class of reacting flow problems in which we are inter-

ested, the main physics sub-problems are: diffusion and convection (�), and chemical reactions (

). Numerically

(Equation 1) is stiff, i.e. the ratio of the largest and the smallest eigenvalues of
�	 %$&�	�

is large, while � is non-stiff.

We address the time integration in a “decoupled” manner by employing an operator-splitting scheme [Strang, 1968;

Sportisse, 2000]. We solve the stiff problem (

) using an implicit backward difference formulation and the non-stiff

problem (�) using an explicit integrator. Thus, the numerical scheme naturally divides into two separate integration

software subsystems: the Implicit Integration Subsystem and the Explicit Integration Subsystem (Fig. 7a).

Explicit integration subsystem

Implicit integration subsystem

(a)

Explicit integration subsystem

Implicit integration subsystem

Diffusion Convection

ThermoChemistry

(b) (c)

ThermoChemistry

Explicit integration subsystem

Diffusion Convection

GrACE Component

Mesh &
Data Object

Implicit integration subsystem

Figure 7: Decomposition sequence for the combustion modeling software. (a) shows the coarse decomposition along
numerical lines into explicit and implicit integration subsystems. In (b), the dictates of physics result in the separation
of physical processes as separate subsystems, which are then populated by various elementary physical and mathe-
matical models. In (c), the domain decomposition and domain discretization functionalities are formally removed to
form new subsystems. The process follows closely the general approach described in Section 10.1.

The physics of the problem, on the other hand, dictate a finer decomposition: for the Explicit Integration Subsystem

a Diffusion Subsystem and a Convection Subsystem, and for the Implicit Integration Subsystem a Chemical Reactions

Subsystem (Figure 7b). Also, the code is fully parallel with structured adaptive mesh refinement; we need to employ

a “data object” to account for efficient domain decomposition and a “mesh object” to perform the adaptive mesh

regeneration. Both objects are accommodated by the componentized version of the GrACE library [Parashar et al.,

2004] as a separate software subsystem (Figure 7c). This path of classification results in the first design approximation

for the reacting flow toolkit. The next step is a a further decomposition of the software subsystems into components,

resulting in a complex software infrastructure where each individual module is reusable and easy to maintain. Details

A Component Architecture for HPC 48

are beyond the scope of this paper and can be found in [Lefantzi et al., 2003b]. A schematic reaction-diffusion code

assembly is presented in Figure 8.

Figure 8: The final results of the
decomposition described in Fig-
ure 7 for a reaction-diffusion prob-
lem. Large boxes represent com-
ponents, smaller rectangles repre-
sent provides ports (left justified
within component box) and uses
ports (right justified). Lines con-
nect uses and provides ports. De-
tails can be found in [Lefantzi
et al., 2003b].

CvodeComponent

DensePort

PropertiesPort

CvodePort DensePort

PropertiesPort

MeshPort

ThermoChemistry

InitCondPort MeshPort

InitialCondition

DiffusionPhysics

DiffFlux DiffCoeffs

DiffCoeffProp

DRFMComponent

DiffCoeffs

DiffCoeffProp

MeshPort

MaxDiffCoeffEvaluator

MeshPort

DiffCoeffProp

DataPort

MaxDiffCoeff

StatisticsPort MeshPort

StatisticsComponent

TimeInterpPort MeshPort

TheTimeInterpolator

RegriderPort MeshPort

ErrEstimAndRegrid

MaxDiffCoeff

DiffFlux

MeshPort

ExplicitIntegrator

ExplIntegPort

DataPort

MeshPort

InitCondPort

ExplIntegPort

StatisticsPort

RegriderPort

ImplIntegPort

GoPort

TheDriver

GrACEComponent

TimeInterpPort

MeshPort
BoundaryConds

ImplIntegPort MeshPort

PropertiesPort

CvodePort

ImplicitIntegrator

Our experience with developing CCA-based scientific components for combustion modeling has demonstrated the

following:

1. General purpose components, implementing a particular numerical or physical functionality, are reused in vari-

ous code assemblies. References [Lefantzi et al., 2003b; Lefantzi and Ray, 2003] document our experience with

numerical integration components (implementing a number of explicit Runge-Kutta and backward difference

algorithms), physical models (diffusion coefficients of gaseous mixtures calculated via a number of different

approaches), data and mesh objects, along with the rationale for particular code assemblies.

2. Once a particular decomposition has materialized, the modular nature of component-based codes allows the

easy replacement of an individual component by another that supplies the same functionality but may exhibit

different characteristics (such as higher accuracy). References [Lefantzi et al., 2003b; Ray et al., 2003a; Lefantzi

et al., 2003a] document how we exploited this modular nature to experiment with multiple models of diffusion

coefficients of gaseous mixtures (using constant Lewis number approximations, mixture averaged models based

on Lennard-Jones potentials, etc.) and higher order spatial discretizations in the evaluation of the diffusion term

(� in Equation 1).

A Component Architecture for HPC 49

3. One of the most significant advantages offered by components is the ability to perform “unit” testing, i.e., each

component is tested individually, in the absence of the final assembly where they will be typically used. This

simple testing process with its quick turn-around time allows one to debug and incorporate a verified compo-

nent in the final assembly easily. While this approach is not particular to components, their modular nature

allows their incorporation into the final assembly without any code modification, thus drastically reducing the

possibility of introducing errors.

13.2 Global Climate Modeling

Simulation using coupled climate models is the chief tool used by scientists to understand the Earth’s climate sys-

tem’s past (i.e., paleoclimate), its internal variability and sensitivity to external forcings such as insolation and trace

chemical concentrations (e.g., carbon dioxide), and to construct scenarios for future climate change. The fact that

climate scenarios are constructed from large history datasets resulting from long model integrations that span the

century-to-millennial timescale makes climate modeling a grand challenge computational science problem. The high

degree of complexity in the number of physical processes modeled and the numerous interactions among the system’s

components–atmosphere, ocean, sea-ice, river, biosphere, and cryosphere–result in a correspondingly high level of

software complexity. For these reasons, the climate community is examining methods to better write and maintain

their applications. Several of these efforts employ the CCA in various aspects of the problem [Larson et al., 2004b].

13.2.1 UCLA Coupled Climate Model and Distributed Data Broker

An ongoing project at JPL consists of a demonstration of CCA with three specific climate components: the UCLA

Atmospheric General Circulation Model (AGCM) [Wehner et al., 1995], the LANL POP Ocean General Circulation

Model (OGCM) [Smith et al., 1992], and the UC Berkeley/UCLA Distributed Data Broker (DDB) [Drummond et al.,

2001]. Neither the AGCM nor OGCM will be described in detail in this paper. In brief, they are both explicit

time-marching schemes that read in initial conditions, have boundary conditions that are defined as fixed except at

the ocean-atmosphere interface (sea surface), where they need to exchange data, and then start marching forward in

time. The atmosphere and ocean exchange flux and state data at the ocean-atmosphere interface. Flux data exchanged

include radiative, fresh water, and momentum fluxes. State data include sea surface temperature and ocean albedo.

A Component Architecture for HPC 50

The DDB is not as well known as the AGCM and OGCM, so it is described in a bit more detail. The DDB is

used in two phases. First, components that will use the DDB to exchange data must register with it by signing up to

produce and/or consume data. In this phase, they also describe the global view of the data that they have/want, and

the mapping of this data onto the processors. The DDB then calculates what messages will have to be sent to transfer

data from components that produce it to components that consume it. This calculation is done on a single processor at

the end of this first phase, but the information about the messages themselves is stored on the processors that will be

sending or receiving data, and the actual data exchange is also distributed. In the second phase, the actual messages

are sent when the components on a given processor signal that they have produced or are ready to consume data. Also,

any interpolation (needed if the grids are not coincident or if no data exists at some set of points) is done by the DDB.

The usual approach to running a simulation using this coupled climate model would be as a multiple program/multiple

data (MPMD) application, with the AGCM and OGCM each running on subsets of the processors, and the DDB run-

ning on all processors to couple the AGCM and OGCM. In this case, the approach chosen to implement the com-

ponentized version using the Ccaffeine framework [Allan et al., 2002] is to cast the AGCM as the overall driver of

the simulation (providing a Go port and using ports provided by the DDB), and to have the AGCM determine the

processes on which the OGCM should be run. An alternative approach would be to move the driver functionality and

partitioning decisions from the AGCM to a separate driver driver component and use a full MCMD model for the

application. Demonstrations of such capabilities have been developed for the Ccaffeine framework at the same time

as this work was being carried out and have not yet been incorporated.

The DDB component is a domain-specific solution to what the CCA refers to as the “M � N parallel data redistri-

bution” problem. In addition to being directly useful in other applications, both in climate and other fields, experience

with this component also informs the CCA’s efforts to develop a more general parallel redistribution capability (Section

12).

13.2.2 The Earth System Modeling Framework

The Earth System Modeling Framework (ESMF) [Killeen et al., 2003] is a national effort to develop common software

utilities (”ESMF infrastructure”) and coupling services (”ESMF superstructure”) in the climate, weather, and data as-

similation domains. The fifteen application testbeds for the ESMF include the Community Climate System Model

A Component Architecture for HPC 51

(CCSM), the Weather Research and Forecast (WRF) model, models from the NOAA Geophysical Fluid Dynamics

Laboratory, the National Centers for Environmental Prediction, MIT, and the NASA Global Modeling and Assimila-

tion Office. Each of these applications either is a multi-component, coupled modeling system or has the potential to

be used in such a modeling system. As collaborators on the ESMF project, these groups will use the ESMF compo-

nent constructs to represent their atmosphere, ocean, land, sea-ice, data assimilation, and coupler components and the

ESMF regridding and communication utilities to connect these components into applications.

The objectives of ESMF are to facilitate:

� an extensible, hierarchical architecture for structuring complex climate, weather and data assimilation models;

� interoperability of modeling components among major centers;

� lower cost of entry into Earth system modeling for university and smaller groups; and

� sharing of common software utilities and services.

Next-generation Earth modeling systems require the incorporation and evaluation of new physical processes such

as biogeochemistry and atmospheric chemistry, which may be represented as new sets of software components. Thus,

the advances that the ESMF offers – the ability to organize large models, easily incorporate new components, and

compare different component implementations (for example, different representations of the ocean) – are critical

capabilities for ongoing scientific progress.

Like the CCA, the ESMF provides a generic component abstraction that connects user-defined components to

the framework through a SetServices() method. Unlike the CCA, the ESMF customizes methods and data

structures for Earth system models, and it provides utilities and services specific to the climate/weather/data assimi-

lation domain. For example, the data exchanged among ESMF components is packed into a data structure called an

ESMF State, which is a container for data types that represent geophysical fields. Since ESMF applications typically

perform a setup, time step through numerical solution of PDEs, and then shut down, ESMF codes are required to have

Initialize(), Run(), and Finalize() methods.

The ESMF and CCA groups have worked closely together to ensure interoperability between the ESMF and CCA

frameworks; i.e., to guarantee that ESMF components may be used within the CCA, and that the ESMF will be able to

utilize the wide variety of CCA-compliant components that exist or are under development. An ESMF-CCA prototype,

A Component Architecture for HPC 52

described in more detail later in this section, has been developed that uses the component registration methodology

and GUI from the CCA. ESMF components do not need to be modified, but can simply be wrapped to become CCA-

compatible. This prototype demonstrates that interoperability between the CCA and the ESMF is entirely plausible

and in fact not onerous, as similar architectural principles underlie both frameworks. The capacity for interoperability

between these frameworks is exciting because it opens the possibilities of bringing many Earth system modeling

components into the CCA arena, and of making CCA tools available to a host of Earth system applications.

ESMF-CCA Interoperability Several notable distinctions exist between the CCA and the ESMF component frame-

works. First and foremost, while the CCA provides a general component model, the ESMF provides a specialized

component model tailored to a specific application domain. Additionally, the CCA enables dynamic composition of

component-based applications at run time, while the ESMF dictates static linkage of a component hierarchy. On the

other hand, the CCA, by its nature, does not provide concrete classes with which to build components, while the ESMF

does (the ESMF infrastructure). In this sense, the CCA is component framework, while the ESMF is an application

framework.

These differences suggest the intriguing possibility of using the CCA component model and the ESMF application

framework together to build climate-related applications, thereby bringing the dynamism of the CCA component

model to this community. This cooperation would also enable coupling to CCA components from within the ESMF

framework, allowing ESMF components to step outside of bounds of the ESMF Initialize(), ESMF Run(),

ESMF Finalize() paradigm if a richer component interface is required. Furthermore, the union of these two

frameworks would provide the CCA community with access to ESMF components.

Bridging the CCA and ESMF to create a joint ESMF-CCA component model is fairly straightforward. ESMF

components are wrapped with a thin layer of C++ code to provide the CCA component veneer. This wrapper allows an

ESMF-CCA application to be composed by selecting from a palette of ESMF-CCA components using the Ccaffeine

CCA framework. A special version of the ESMF component registration function is provided for all ESMF-CCA

components, to allow them to register their ESMF interface functions (initialize, run, finalize). Once all components

have been created and connected, the CCA framework passes control flow over to the ESMF framework.

A major advantage of this dynamic approach is that components can be easily substituted for one another without

modifying user code (as long as the swapped components conform to the same interface). As it now stands, one must

A Component Architecture for HPC 53

modify ESMF superstructure components to replace a component, as the complete component hierarchy is coded into

an ESMF application. We recognize that climate and weather models do not typically require run-time swapping of

geophysical components, since it takes on the order of months to tune and validate these applications, and months

to run long climate simulations. However, run-time swapping may be useful for communication and input/output

components.

ESMF Prototypes Using the CCA To demonstrate possibilities for interoperation between the ESMF and the CCA,

we have developed a prototype ESMF implementation on top of CCA tools and CCA-compliant components [Zhou

et al., 2003; Zhou, 2003]. The CCA components additionally provide the basic methods required by the ESMF (initial-

ize, run, finalize). Data exchange occurs through a self-describing data type similar to the ESMF’s ESMF State. We

are currently working on a C++ version of the ESMF component interface so that ESMF components can be used with

the CCA in a straightforward way. A model ESMF-CCA application has been implemented using the Ccaffeine frame-

work; this project illustrates the case of sequential coupling of an atmosphere model and and ocean model (Figure 9).

At the beginning of a simulation, five components are created: a driver (Climate), the atmosphere (Atm), the ocean

(Ocn), a coupler from atmosphere to ocean (CplAtmXOcn), and a coupler from ocean to atmosphere (CpleOcnXAtm).

The component execution sequence of events is as follows:

1. The atmosphere component provides its data at its boundary, exportAtm, to the coupler, CplAtmXOcn.

2. CpleAtmXOcn uses exportAtm, transforms it into importOcn with interpolation routines, and then provides

importOcn to the ocean component.

3. With importOcn, the ocean component runs its solver for the evolution equations and then provides its data at

the boundary, exportOcn, to the coupler, CplOcnXAtm.

4. The coupler, CpleOcnXAtm, uses exportOcn, transforms it into importAtm, and provides importAtm to the

atmosphere component.

5. The atmosphere component uses importAtm, runs its solver for evolution equations, and then provides its data

at the boundary, exportAtm, to the coupler, CpleAtmXOcn.

A Component Architecture for HPC 54

Figure 9: CCA wiring diagram
showing component relationship in
a simulation of coupled atmosphere
and ocean model components of
the ESMF-CCA prototype.

Data flow

Port link

13.2.3 The Community Climate System Model

The Community Climate System Model (CCSM) [Harper and Kauffman, 2004] is a coupled climate model, compris-

ing several mutually interacting models developed through an interagency collaboration between the U.S. Department

of Energy and the National Science Foundation’s National Center for Atmospheric Research. Key modules of the

CCSM include models for atmosphere, ocean, sea ice, land-surface, river routing, and a flux coupler. The flux coupler

provides the overall coordination of the coupled model’s execution and a variety of services related to the simulation

data: intermodel state and flux data transfer, interpolation between model grids, calculation of fluxes and other di-

agnostic quantities, time averaging and accumulation of flux and state data, and merging of flux and state data from

multiple model sources for use by another model.

Collaboration between the CCSM and the CCA is focused on three areas. We are prototyping use of CCA at the

system integration level, the model subcomponent level, and the algorithmic level. We are also exploring the use of

CCA to package portions of the Model Coupling Toolkit [Larson et al., 2004a; Larson et al., 2001; Ong et al., 2002]

(the foundation code on which CCSM’s flux coupler is built) as CCA components. Since CCSM plans to adopt the

standard interfaces being developed by the ESMF project (see Section 13.2.2), this work is also being performed in

collaboration with the ESMF group. The next three sections describe individual projects in this area.

A Component Architecture for HPC 55

Model Coupling Toolkit The current CCSM flux coupler was implemented using the Model Coupling Toolkit

(MCT) [Larson et al., 2004a; Larson et al., 2001; Ong et al., 2002]. MCT is a software package for constructing

parallel couplings between MPI-based distributed-memory parallel applications which supports both sequential and

concurrent couplings and can support multiple executable images if the implementation of mpirun used supports this

feature. MCT is implemented in Fortran 90, and its programming model is friendly to scientific programmers, based

on a Fortran 90 module to declare MCT-type variables and the invocation of MCT routines to create couplings.

The first major focus of the MCT-CCA collaboration has been the creation of a migration path between MCT-

based coupling and a CCA-compliant component-based approach [Larson et al., 2004c]. The approach we are taking

involves the use of the ESMF specification to bridge between the MCT and the CCA’s more generic component

environment. Low-level MCT functionality is being wrapped to provide an implementation of the relevant ESMF-

defined interfaces and adapters to ESMF-defined data objects, such as ESMF State. Currently, we support SCMD

component scheduling and coupling only, but it will soon be expanded to support MCMD coupling as well.

We have begun the task of describing ESMF-compliant MCT interfaces using SIDL. The first and obvious moti-

vating factor is the goal of repackaging MCT as a collection of CCA-compliant components. Prospective MCT-based

components include distributed multi-field data storage, parallel sparse matrix-vector interpolation, global integrals,

and averages. In addition to their use in the flux coupler context, such components can be used within individual mod-

els as well, as described below. Another application of the SIDL interface description is the extension of the MCT’s

programming model to languages other than Fortran 90. This is an example of how the Babel interlanguage interoper-

ability tool can be used in a context outside of the CCA. Finally, like the Distributed Data Broker, the MCT is clearly

another domain-specific solution to the M � N parallel data redistribution problem for the climate modeling area. The

experience gained from the development and use of the MCT, as well as comparisons with the DDB, will inform the

CCA’s efforts to develop general M � N capabilities. In addition, once the general M � N interface is more mature,

we anticipate using elements of the MCT as the basis for an implementation of a more general data redistribution

component.

CCSM System Integration At the system integration level, we are prototyping the use of the CCA to cast the

CCSM’s component models as CCA-compliant components. We have developed skeleton components for the atmo-

sphere, ocean, sea ice, land surface, river routing, and flux coupler. These components can then be instantiated and

A Component Architecture for HPC 56

Figure 10: Prototype of a CCA
component-based system integra-
tion of the CCSM.

connected by using the Ccaffeine GUI (Figure 10); their subsequent execution is similar to the ESMF-CCA prototype

described above. These skeleton components are being expanded to have the capabilities of the CCSM data models

that are used to perform system integration tests on the CCSM coupler. The components will then entail sufficient

computational complexity that we can begin to assess in the coupling context any performance costs associated with

CCA components versus the current coupler.

Community Atmosphere Model An example of a CCA application targeted at the model subcomponent level is

the refactoring of the CCSM’s atmosphere model, called the Community Atmosphere Model (CAM) [University

Corporation for Atmospheric Research, 2004]. CAM has been refactored to disentangle its dynamical core from its

subgridscale physics parameterizations. This split has allowed a proliferation of dynamical cores, and CAM currently

has three: a pseudo-spectral method, the Rasch-Williamson semi-Lagrangian method, and the finite-volume Lin-Rood

scheme. Standardization of the interfaces to these dynamical cores and the overall subgridscale physics package is

under way. Once complete, these software modules can be packaged as CCA components. This will allow one to use

the CCA to compose and invoke a stand-alone version of the CAM in which the user may plug in the dynamical core

of choice. Furthermore, the developer of a new dynamical core will need only code it to the interface standard, and it

will be easily integrated into the model for validation.

A Component Architecture for HPC 57

River Transport Model The river transport model (RTM) in the CCSM version 2 computes river flow on a 0.5 '
latitude-longitude grid and uses no parallelism in its calculations. Future science goals for the RTM include support

for significantly higher-resolution (up to 100 � the number of catchments) and catchment-based unstructured grids,

support for transport of dissolved chemical tracers, and inclusion of the effects of water storage in the form of reser-

voirs. At the current resolution, the lack of parallelism in the RTM calculation does not retard the overall execution of

CCSM, but the process of coupling to the RTM, which requires gathering (scattering) data to (from) a single processor

when sending (receiving) data to (from) the RTM, does impose a bottleneck. This coupling communications cost

exceeds the computation cost of the RTM itself.

To incorporate distributed-memory parallelism in the RTM and meet its science goals, we are developing a com-

pletely new implementation of the RTM using the MCT. In this approach, we view the problem of river transport

as a directed graph with the nodes representing catchments and the directed edges representing the dominant inter-

catchment flow paths. The river transport calculation is then implemented as a parallel sparse matrix-vector multiply,

and the load balance for this operation can be computed by using graph partitioning. Mass conservation is ensured

through the calculation of global mass integrals before and after the matrix-vector multiply. This problem is easily

solved using the MCT. The ESMF-compliant MCT multifield data storage object is used to store runoff and tracer con-

centration data; the MCT’s domain decomposition descriptors are used to describe the load balance; MCT’s parallel

sparse matrix-vector multiply is used to perform the water and chemical tracer transport; and the MCT’s paired global

spatial integral facility is used to carry out the mass balance and mass conservation calculations.

The component-based approach used for key MCT capabilities makes the path to a component-based RTM clear.

Four MCT-based components will be used to implement the RTM: a distributed multifield array to store water and

chemical tracer concentrations; a parallel sparse-matrix vector multiply to compute water and chemical tracer trans-

port; a component describing the physical grid (i.e., the locations and sizes of the catchments); and a paired spatial

integral component to enforce mass conservation.

13.3 Quantum Chemistry

The quantum chemistry community has an extended history of developing large, monolithic codes where essentially

all of the code, including the mathematical routines, are written by chemists. This attitude, however, has been changing

A Component Architecture for HPC 58

– it is becoming much more difficult for any group to maintain expertise in all aspects of the chemistry, mathematics,

and computer science. For example, it is now common for chemistry programs to use basic linear algebra subroutines

(BLAS), which are bundled in libraries that have been generally developed by mathematicians and computer scientists

to perform well. By using these libraries, chemists can concentrate on the chemical/physical problem at hand instead

of worrying about the performance of the BLAS.

The developers of NWChem [Kendall et al., 2000; Pacific Northwest National Laboratory, 2004b] and MPQC [Janssen

et al., 1998; Sandia National Laboratories, 2004] have joined with others in the CCA effort to examine the use of

components in quantum chemistry. The first challenge chosen was that of optimizing a molecular geometry using

NWChem and MPQC to calculate the energy, gradient, and Hessian (function, first derivative, and second derivative,

respectively), TAO [Benson et al., 2001; Benson et al., 2003b] for the optimization capability, and PETSc [Balay et al.,

2003; Balay et al., 1997] or Global Arrays [Nieplocha et al., 1996; Pacific Northwest National Laboratory, 2004a] for

the linear algebra and management of distributed data structures. The basic component diagram is shown in Figure 11.

Figure 11: A schematic represen-
tation of the CCA chemistry op-
timization component architecture.
Image courtesy of Joseph P. Kenny,
Sandia National Laboratory.

Molecular geometry optimizations are a very common part of quantum chemistry applications, and each code

has its own specializations to reach a structure in as few function evaluations as possible. This model makes it very

difficult to reuse code between programs since the optimization routines can be very tied into the particular program.

Our initial goal in this work was to decouple the optimization problem from the function evaluations so that multiple

chemistry codes could be used with multiple optimization methods. Therefore, when a new optimization method is

developed, it will be available to a wider chemistry community. This approach also allows users to have multiple

chemistry programs available to them through a common interface, thereby allowing users to take advantage of the

A Component Architecture for HPC 59

different algorithms available for solving a particular chemical problem.

In order to accomplish this goal, of course, interfaces needed to be standardized. In this case, a decision was made

to develop a general quantum chemistry interface that satisfied the NWChem and MPQC developers’ needs as opposed

to developing a broader interface with the whole chemistry community. This decision was made so that initial progress

could be made and experience could be gained. In the future, we anticipate that other chemists will be involved, at

which time the interface will need to be revisited. These interfaces use SIDL specifications and Babel to create server

implementations for both NWChem, which uses Fortran, and MPQC, which uses C++. Other interfaces associated

with the optimization model and with the linear algebra had already been created before the chemistry developers

became involved. These interfaces were used with a few modifications as appropriate for the chemistry problem.

In this approach, a very course level of componentization was chosen to begin. Very high level capability, such as

setting molecular geometries, wavefunction type, and basis sets and then computing energies, gradients, and Hessians

is made available through the quantum chemistry interface. Now that the developers have experience with the CCA

infrastructure, we will be developing lower level components, such as those for building Fock matrices, calculating

properties, and other mathematical constructs such as eigensolvers and diagonalizers.

We are also currently exploring the use of the MCMD execution model for carrying out independent function

evaluations simultaneously and for increasing flexibility in composing programs. This type of capability will be

critical to applications that rely on methods such as Monte Carlo, combined quantum chemical methods (those that

use varying levels of theory to model different parts of the chemical system), and dynamics simulations where multiple,

relatively independent function evaluations are required.

14 The People Behind the CCA

The small grass-roots effort that launched the CCA has grown into a sizable community of computational science

researchers developing and using CCA technology, represented by the CCA Forum. Members of this community have

also successfully launched a variety of funded research projects that focus on various aspects of the development and

use of the CCA.

The CCA Forum can be thought of as a combination of a standards body and a user group for the CCA. The Forum

has met quarterly since 1998 and is open to all interested parties. (Meeting information is available on the Forum’s

A Component Architecture for HPC 60

web site (http://www.cca-forum.org and on its primary mailing list [CCA Forum, 2004].) Meetings, as well

as the mailing list, serve as an opportunity for discussion of issues and experiences relating to the development and

use of the Common Component Architecture. The Forum also defines the CCA specification. Voting privileges are

conferred on all who have attended two of the last three CCA Forum meetings as of the date of the proposal, and voting

takes place via the web over a two week period. At the moment, the Forum has 24 voting members representing 11

different institutions.

The core group that launched the CCA Forum (Argonne, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific

Northwest, and Sandia National Laboratories, Indiana University, and the University of Utah) in 2001 created the

Center for Component Technology for Terascale Simulation Software (CCTTSS) as part of the U. S. Department of

Energy’s (DOE) Scientific Discovery through Advanced Computing (SciDAC) program [U. S. Dept. of Energy, 2003].

The mission of the CCTTSS is to develop a better understanding of the most appropriate ways to use CBSE in scien-

tific computing, as well as to develop the fledgling CCA ideas and prototypes into a production-quality environment

suitable for use in large-scale applications. Thus, the CCTTSS acts as the anchor for CCA development.

However, the CCTTSS is far from the only funded project relating to the CCA. Other more focused efforts in-

vestigate performance monitoring and tuning and various aspects of distributed computing with sponsorship from the

DOE, NASA, and the National Science Foundation. In almost all cases, CCA users have separate funding through

grant proposals that may or may not have explicitly mentioned CCA.

15 Future Work

The Common Component Architecture is a long-term research and development effort with contributions from nu-

merous separate projects, anchored by the Center for Component Technology for Terascale Simulation Software. It is

impossible to capture the CCA-related research plans of all these projects and individuals; however, we can point to a

number of enduring themes and highlight several specific initiatives that we expect to yield results in the near term.

15.1 Understanding of the Role of CBSE in HPC

One of the key motivations for pursuing the CCA in the first place was the fact that CBSE had made few inroads

into HPC scientific computing with existing component environments. As a consequence, an important part of the

A Component Architecture for HPC 61

CCA effort is to gain a better understanding of how CBSE can be best used in this area. As part of this effort, CCA

researchers work closely with component and application developers not only on the software itself, but also to gain

information about the use of CBSE is effecting the process. The results of this work feed back into the design of

the CCA and future component technologies, as well as contribute to the development of “best practices” and other

guidance on how to use CBSE in scientific computing.

15.2 Development of the CCA Specification and Environment

As mentioned previously, the CCA specification is not a static document, but rather evolves as CCA researchers find

that additions or changes are needed. Likewise, the tools that implement the CCA environment are also still very much

under development. New tools to improve or extend the CCA environment are also under development by numerous

researchers.

15.3 Development of Interfaces and Components

Another of the primary motivations for the development of the CCA is to increase software productivity by facilitating

the reuse of components. In this context, a rich library of components that can used to simplify the creation of new

applications is an attractive feature. Section 11 is a good start, but it is also just a tiny fraction of what could be

made available as reusable components. CCA researchers will continue to engage domain experts to design common

interfaces to promote interoperability and to encourage the development of components implementing these interfaces.

15.4 Parallel Data Redistribution and Parallel Remote Method Invocation

Section 12 described in some detail our ongoing effort to develop generalized tools and capabilities for model cou-

pling and related problems. Work on parallel data redistribution has already been used in several demonstrations and

applications, and the research is progressing to incorporate the initial lessons learned into an improved interface design

and software implementations. Work on parallel RMI is much newer, but we expect it to produce useful results in the

near term.

A Component Architecture for HPC 62

15.5 Richer Interface Descriptions

At present, the CCA works with a very basic syntactic definition of component interfaces, which includes method

names, argument types, and some information about memory management responsibilities. The definition of the se-

mantics and behavior of the interface can currently be expressed only through comments in code. While this limitation

is widespread within both component-based and traditional computing and is in no way unique to the CCA, it is clear

that to fully realize the benefits of CBSE for complex scientific applications, richer interface descriptions that provide

more complete, readily processable specifications of syntax, semantics, and behavior are highly desirable. The more

complete the specification, the greater the confidence application developers can have that they are using components

correctly [Baudry et al., 2001; Beugnard et al., 1999]. Expressing such interface specifications in a form amenable

to machine processing allows automated verification of correct usage and operation. The Design by Contract ap-

proach [Meyer, 1997] to ensuring correctness relies on the use of assertions. The basic assertion mechanisms suitable

for interface specifications are being integrated into Babel [Dahlgren et al., 2002; Dahlgren et al., 2003].

However, correct usage of a component goes beyond assertions about the arguments and return values of its meth-

ods. Another factor is whether the methods are being invoked in the correct order [Bronsard et al., 1997; Hamie,

1999]. This is a common issue for any complex process or computation. Real-world applications often require multi-

ple steps in specific sequences. For example, a matrix must be initialized and assembled before computations on it can

be performed. Unfortunately, it is easy for developers to forget or misplace a step, making debugging large or complex

applications more difficult.

The challenges to richer descriptions include capabilities and limitations relating to expressiveness and extension

within the context of interface specifications. For example, only those methods listed in the specification can be

included in the assertions, even if underlying dependencies exist within the implementation. In addition, an extending

class may need to expand on the sequencing constraints of its ancestors through the insertion of additional steps in

the middle of an inherited step. Furthermore, the performance costs associated with retaining an adequate level of

assertion checking in deployed components is a concern for both component developer and user. Questions that are

currently being explored focus on a new approach to assertion checking to mitigate performance issues in deployed

components. Long term research will focus on expressiveness and scalability.

A Component Architecture for HPC 63

15.6 Dynamic Code Insertion and Remote Method Invocation in Babel

The fact that Babel sits between the user and provider of a port puts it in a very useful position to allow it to perform

a wide range of operations in conjunction with method calls. The verification of assertions described above is one

example. But one can use Babel’s unique position to dynamically interpose code between caller and callee in a more

general fashion. Hooks are being added to Babel to allow this to be done under user control. A prototype version of

this capability has been used to support integration of the Tuning and Analysis Utilities (TAU) [Malony and Shende,

2000; University of Oregon, 2003] into the CCA environment, thereby “automatically” instrumenting all inter-port

method calls with calls to the TAU routines to start and stop gathering of performance information. Other applications

of this capability are under investigation, including limited forms of aspect-oriented programming [Aspect-Oriented

Software Association, 2004].

Similarly, the boundary between languages, and the boundary between components, is a logical place to implement

remote method invocation (RMI) to provide more direct support for distributed computing. From Babel’s perspective,

RMI is just like any other language backend. Because Babel is between caller and callee, it can serialize the method

invocation over a wire protocol and invoke the method in another process or on another machine.

SIDL already supports method arguments as in, out or inout, and these designations allow the in-process and

RMI layer to optimize the method invocation. Arguments can also be designated as copy to indicate that Babel should

serialize the object for a distributed call rather than only passing a remote reference to the object. Finally, methods can

be designated as oneway so the caller can dispatch the call over the wire without waiting for a return code indicating

completion of the method.

We are currently integrating an RMI backend using the Proteus multiprotocol message library [Chiu et al., 2002],

which is implemented in C++. Once Proteus has been integrated into Babel, it will enable interoperability between the

CCaffeine and XCAT frameworks.

15.7 Computational Quality of Service

The relative maturity of component-based software infrastructures encourages users to look beyond syntactically con-

necting components to using higher-level information about component properties to compose applications. Some of

these properties pertain to the quality of the services used and provided by components. As more scientific components

A Component Architecture for HPC 64

are developed, many applications are presented with a pool of algorithms with similar functionality but different re-

source requirements, performance, accuracy, and stability. For example, at the heart of many PDE-based simulations,

a set of nonlinear equations must be solved, usually requiring the solution of many linear systems of equations, whose

characteristics may vary throughout the simulation. By formally specifying the quality requirements of the nonlinear

solution method, as well as the capabilities of different linear solution methods, one can at least partially automate the

complex task of assembling components into applications and adaptively switching component instances at runtime.

Some nascent efforts on defining a model for the QoS-based composition of high-performance numerical com-

ponents address various aspects of a possible architecture design that enables automated application composition and

run-time application adaptivity [Hovland et al., 2003; Norris et al., 2004]. The draft QoS architecture defines speci-

fications and services for component characterization, component proxy services, component replacement, decision-

making functionality, and archival and retrieval of execution information. The quality metrics in this architecture

include traditional ones, such as reliability and computational cost, as well as metrics that are uniquely important to

scientific computations, such as accuracy and rates of convergence. The long term goal of this research is to guide the

design of a methodical and automated approach to component application composition and run-time adaptation.

16 Conclusions

Component-based software engineering is a natural approach to facilitate the development of complex, large-scale,

high-performance scientific simulations. Its adoption in this area has been limited by the lack of a component model

that meets the special needs of the HPC community; however, the Common Component Architecture is being devel-

oped specifically to address this issue. The CCA supports sequential, parallel, and distributed computing paradigms

with minimal performance overhead and with a special emphasis on facilitating the incorporation of existing code.

Although the project is far from complete, the CCA specification and associated tools have reached a level of

maturity required for adoption by a number of projects across a range of scientific disciplines. We have provided a

brief overview of several such efforts in combustion, climate modeling, and quantum chemistry, as well as offered a

glimpse at the wide range of components currently available or under development.

Our understanding of how best to utilize CBSE in scientific computing advances continuously through our interac-

tions with the various projects utilizing the CCA. However, the field is broad and highly varied, and it will take some

A Component Architecture for HPC 65

time to gain the necessary breadth and depth of experience. There are also many opportunities on the research front

of CBSE itself, and we outlined a number of areas that CCA researchers are exploring. Nevertheless, clearly much

research and development remain to be done to bring the full benefits of CBSE to scientific computing and ultimately

to make it part of the mainstream for computational science.

17 Acknowledgments

The CCA has been under development since 1998 by the CCA Forum and represents the contributions of many people,

all of whom we gratefully acknowledge. We further acknowledge our collaborators outside the CCA Forum and the

early adopters of the CCA for the important contributions they have made both to our understanding of CBSE in the

high-performance scientific computing context and to making the CCA a practical and usable environment.

This work has been supported in part by the U. S. Department of Energy’s Scientific Discovery through Advanced

Computing (SciDAC) initiative, through the Center for Component Technology for Terascale Simulation Software, of

which Argonne, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories,

Indiana University, and the University of Utah are members. Members of the SciDAC center Computational Facility

for Reacting Flow Research have also contributed to this paper.

Research at Argonne National Laboratory was supported in part by the Mathematical, Information, and Compu-

tational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science,

U.S. Department of Energy, under Contract W-31-109-ENG-38.

Some of this work was performed under the auspices of the U.S. Department of Energy by University of California

Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the US Dept. of Energy under contract

DE-AC-05-00OR22725.

This research was performed in part using the Molecular Science Computing Facility (MSCF) in the William R.

Wiley Environmental Laboratory at the Pacific Northwest National Laboratory (PNNL). The MSCF is funded by the

Office of Biological and Environmental Research in the U.S. Department of Energy. PNNL is operated by Battelle for

the U.S. Department of Energy under contract DE-AC06-76RLO 1830.

Research at Binghamton University is sponsored by grant DE-FG02-02ER25526 from the MICS program of the

A Component Architecture for HPC 66

U.S. Dept. of Energy, Office of Science.

Some of research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute

of Technology and by Northrop Grumman/TASC with funding provided by NASA’s Computation Technologies (CT)

Project, part of the Earth Science Technology Office (ESTO), under a contract with the National Aeronautics and

Space Administration.

Research at the University of Oregon is sponsored by contracts (DE-FG03-01ER25501 and DE-FG02-03ER25561)

from the MICS program of the U.S. Dept. of Energy, Office of Science.

Research at the University of Utah is also sponsored by the National Science Foundation under contract ACI0113829.

References

Allan, B., Armstrong, R., Lefantzi, S., Ray, J., Walsh, E., and Wolfe, P.: 2003, Ccaffeine – a CCA Component

Framework for Parallel Computing, http://www.cca-forum.org/ccafe/

Allan, B. A., Armstrong, R. C., Wolfe, A. P., Ray, J., Bernholdt, D. E., and Kohl, J. A.: 2002, Concurrency and

Computation: Practice and Experience 14(5), 1

Allen, G., Benger, W., Goodale, T., Hege, H., Lanfermann, G., Merzky, A., Radke, T., Seidel, E., and Shalf, J.: 2000,

in High Performance Distributed Computing (HPDC), pp 253–260, IEEE Computer Society

Anonymous: 2003, Jython, http://www.jython.org/

Anonymous: 2004, AVS Kernel Overview, http://www.agocg.ac.uk/reports/visual/vissyst/

dogbo_28.htm

Argonne National Laboratory: 2003, MPICH homepage, http://www.mcs.anl.gov/mpi/mpich/

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker, S., and Smolinski, B.: 1998, in

Proceedings of the The Eighth IEEE International Symposium on High Performance Distributed Computing

Aspect-Oriented Software Association: 2004, Aspect-Oriented Software Development, http://www.aosd.net/

Balay, S., Buschelman, K., Gropp, W., Kaushik, D., Knepley, M., McInnes, L., Smith, B. F., and Zhang, H.: 2003,

PETSc Users Manual, Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, http:

//www.mcs.anl.gov/petsc

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: 1997, in E. Arge, A. M. Bruaset, and H. P. Langtangen

A Component Architecture for HPC 67

(eds.), Modern Software Tools in Scientific Computing, pp 163–202, Birkhauser Press, also available as Argonne

preprint ANL/MCS-P634-0197

Baudry, B., Traon, Y. L., and Jezequel, J.: 2001, in Proceedings of the 7th International Software Metrics Symposium,

pp 272–284

Beazley, D.: 2003, SWIG homepage, http://www.swig.org/

Beckman, P., Fasel, P., Humphrey, W., and Mniszewski, S.: 1998, in Proceedings of the 7th IEEE International

Symposium on High Performance Distributed Computation

Benson, S., Krishnan, M., McInnes, L., Nieplocha, J., and Sarich, J.: 2003a, Using the GA and TAO Toolkits

for Solving Large-Scale Optimization Problems on Parallel Computers, Technical Report ANL/MCS-P1084-

0903, Argonne National Laboratory, submitted to ACM-TOMS, ftp://info.mcs.anl.gov/pub/tech_

reports/reports/P1084.pdf

Benson, S., McInnes, L. C., and Moré, J.: 2001, ACM Transactions on Mathematical Software 27, 361

Benson, S., McInnes, L. C., Moré, J., and Sarich, J.: 2003b, TAO Users Manual, Technical Report ANL/MCS-TM-242

- Revision 1.5, Argonne National Laboratory, http://www.mcs.anl.gov/tao/

Bernholdt, D. E., Armstrong, R. C., and Allan, B. A.: 2004, in Proc. of HPCA Workshop on Productivity and

Performance in High-End Computing (P-PHEC 2004), Madrid, Spain, IEEE Computer Society

Bernholdt, D. E., Elwasif, W. R., and Kohl, J. A.: 2002a, in D. Kranzlmüller, P. Kacsuk, J. Dongarra, and J. Volk-

ert (eds.), Recent Advances in Parallel Virtual Machine and Message Passing Interface. 9th European PVM/MPI

User’s Group Meeting Linz, Austria, September/October 2002. Proceedings, Vol. 2474 of Lecture Notes in Com-

puter Science, pp 260–270, Springer

Bernholdt, D. E., Elwasif, W. R., Kohl, J. A., and Epperly, T. G. W.: 2002b, in Proceedings of the Workshop on

Performance Optimization via High-Level Languages and Libraries (POHLL-02)

Bertrand, F. and Bramley, R.: 2004, in Proceedings of HIPS 2004, 9th International Workshop on High-Level Parallel

Programming Models and Supportive Environments, IEEE Press, Santa Fe, NM, to appear

Beugnard, A., Jezequel, J., Plouzeau, N., and Watkins, D.: 1999, IEEE Computer 32(7), 38

Birrell, A. D. and Nelson, B. J.: 1984, ACM Transactions on Computer Science 2(1), 39

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry,

A Component Architecture for HPC 68

G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.: 1997, ScaLAPACK Users’ Guide, Society for Industrial

and Applied Mathematics, Philadelphia, PA

Box, D.: 1997, Essential COM, Addison-Wesley Pub Co

Bronsard, F., Bryan, D., Kozaczynski, W. V., Liongosari, E., Ning, J. Q., Olafsson, A., and Wetterstrand, J. W.: 1997,

in Proceedings of the 1997 Symposium on Software Reusability, pp 19–29

Brown, D. L., Henshaw, W. D., and Quinlan, D. J.: 1999, in Proceedings of the SIAM Workshop on Object Oriented

Methods for Inter-operable Scientific and Engineering Computing, pp 58–67, SIAM

CCA Forum: 2003, CCA Specification, http://cca-forum.org/specification/

CCA Forum: 2004, cca-forum@cca-forum.org mailing list, http://www.cca-forum.org/mailman/

listinfo/cca-forum/

Chiu, K., Govindaraju, M., and Gannon, D.: 2002, in Proceedings of the 2002 ACM/IEEE conference on Supercom-

puting, pp 1–9, IEEE Computer Society Press

Chow, E., Cleary, A., and Falgout, R.: 1999, in Proceedings of the SIAM Workshop on Object Oriented Methods for

Inter-operable Scientific and Engineering Computing, SIAM

Christensen, E. et al.: March 2001, Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/

wsdl/

Colella, P.: 2003, An Algorithmic and Software Framework for Applied Partial Differential Equations Center

(APDEC), http://davis.lbl.gov/APDEC/

Dahlgren, T., Epperly, T., Kohn, S., and Kumfert, G.: 2002, Introducing Design-by-Contract to SIDL/Babel, Technical

Report UCRL-PRES-150102, Lawrence Livermore National Laboratory, http://www.llnl.gov/CASC/

components/docs.html

Dahlgren, T., Epperly, T., and Kumfert, G.: 2003, Babel/SIDL Design-by-Contract: Status, Technical Report UCRL-

PRES-152674, Lawrence Livermore National Laboratory, http://www.llnl.gov/CASC/components/

docs.html

Dahlgren, T., Epperly, T., and Kumfert, G.: 2004, Babel User’s Guide, CASC, Lawrence Livermore National

Laboratory, version 0.9.0 edition

Damevski, K.: 2003, Master’s thesis, The University of Utah

A Component Architecture for HPC 69

Denis, A., Pérez, C., and Priol, T.: 2001, in C. A. Lee (ed.), Proceedings of the 2nd International Workshop on Grid

Computing, Vol. 2242 of Lecture Notes in Computer Science, pp 14–25, Springer-Verlag, Berlin

Denis, A., Pérez, C., Priol, T., and Ribes, A.: 2003, Distributed Systems Online 4(2), http://dsonline.

computer.org/0302/f/pri_print.htm

Drummond, L. A., Demmel, J., Mechoso, C. R., Robinson, H., Sklower, K., and Spahr, J. A.: 2001, in Proceedings of

the International Conference on Computational Science, pp 31–40

Edjlali, G., Sussman, A., and Saltz, J.: 1997, in International Parallel Processing Symposium, IEEE Computer Society

Press, Geneva, Switzerland

Englander, R.: 1997, Developing Java Beans, O’Reilly and Associates

Falgout, R. et al.: 2003, hypre, http://www.llnl.gov/CASC/hypre/

Forum, M. P. I.: 1994, International Journal of Supercomputer Applications and High Performance Computing 8(3/4),

159

Foster, I. and Kesselman, C.: 1998, The GRID: Blueprint for a New Computing Infrastructure, Morgan-Kaufmann

Foster, I., Kesselman, C., Nick, J., and Tuecke, S.: 2002, Computer 35(6)

Geist, G. A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., and Sunderam, V.: 1994, PVM: Parallel Virtual

Machine, A User’s Guide and Tutorial for Networked Parallel Computing, MIT Press, Cambridge, MA

Geist, G. A., Kohl, J. A., and Papadopoulos, P. M.: 1997, The International Journal of High Performance Computing

Applications 11(3), 224

Glimm, J., Brown, D., and Freitag, L.: 2001, Terascale Simulation Tools and Technologies (TSTT) Center, http:

//www.tstt-scidac.org/

Global Grid Forum: 2003, The Open Grid Services Infrastructure Working Group, http://www.gridforum.

org/ogsi-wg/

Gosling, J., Joy, B., and Steele, G.: 1996, The Java Language Specification, Available at http://java.sun.com/

Govindaraju, M., Krishnan, S., Chiu, K., Slominski, A., Gannon, D., and Bramley, R.: 2003, in 3rd IEEE/ACM

International Symposium on Cluster Computing and the Grid

Grimshaw, A., Ferrari, A., Knabe, F., and Humphrey, M.: 1999, IEEE Computer 32(5)

Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.-J., and Nielsen, H. F.: 2003, SOAP Version 1.2, http:

A Component Architecture for HPC 70

//www.w3.org/TR/soap12-part1/

Guilyardi, E., Budich, R. G., and Valcke, S.: 2002, in Proceedings of Realizing TeraComputing - Tenth Workshop on

the Use of High Performance Computing in Meteorology

Hamie, A.: 1999, in Proceedings of 6th Asia-Pacific Software Engineering Conference (APSEC ’99), pp 376–383

Harper, L. and Kauffman, B.: 2004, Community Climate System Model, http://www.ccsm.ucar.edu/

Henshaw, W. et al.: 2002, Overture, http://www.llnl.gov/CASC/Overture/

Heroux, M., Bartlett, R., Hoekstra, V. H. R., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E.,

Salinger, A., Thornquist, H., Tuminaro, R., Willenbring, J., and Williams, A.: 2003, An Overview of Trilinos,

Technical Report SAND2003-2927, Sandia National Laboratories

Heroux, M. et al.: 2004, Trilinos, http://software.sandia.gov/Trilinos

Hindmarsh, A. and Serban, R.: 2002, User Documentation for CVODES, An ODE Solver with Sensitivity Analysis

Capabilities, Technical Report UCRL-MA-148813, Lawrence Livermore National Laboratory, http://www.

llnl.gov/CASC/sundials/

Hoare, M. R.: 1979, Advances in Chemical Physics 40, 49

Hovland, P., Keahey, K., McInnes, L. C., Norris, B., Diachin, L. F., and Raghavan, P.: 2003, in Proceedings of Work-

shop on QoS in Component-Based Software Engineering, Software Technologies Conference, Toulouse, France

Janssen, C. L., Nielsen, I. M. B., and Colvin, M. E.: 1998, Encyclopedia of Computational Chemistry, Chapt. Parallel

Processing for ab Initio Quantum Mechanical Methods, John Wiley & Sons, Chichester, UK

Johnson, C. and Parker, S.: 1995, in H. Meuer (ed.), Supercomputer ‘95, pp 2–19, Springer-Verlag

Katz, D. S., Tisdale, E. R., and Norton, C. D.: 2002, in Recent Advances in Computational Science & Engineering:

Proceedings of the International Conference on Scientific & Engineering Computation (IC-SEC) 2002, pp 353–

356, Imperial College Press

Keahey, K.: 1996, Ph.D. thesis, Indiana University - Bloomington

Keahey, K., Fasel, P., and Mniszewski, S.: 2001, in Proceedings of the High Performance Distributed Computing

Conference, San Francisco, CA

Keahey, K. and Gannon, D.: 1997, in Proceedings of the High Performance Distributed Computing Conference, pp

31–39

A Component Architecture for HPC 71

Kendall, R. A., Apra, E., Bernholdt, D. E., Bylaska, E. J., Dupuis, M., Fann, G. I., Harrison, R. J., Ju, J. L., Nichols,

J. A., Nieplocha, J., Straatsma, T. P., Windus, T. L., and Wong, A. T.: 2000, Computational Physics Communication

128, 260

Keyes, D.: 2004, Terascale Optimal PDE Simulations (TOPS) Center, http://tops-scidac.org/

Killeen, T., Marshall, J., and da Silva, A.: 2003, Earth System Modeling Framework homepage, http://www.

esmf.ucar.edu/

Kohl, J. A.: 1997, ORNL Review, Special Issue on Advanced Computing 30(3/4), 224

Kohl, J. A. and Geist, G. A.: 1999, in IASTED International Conference on Applied Modeling and Simulation, Cairns,

Queensland, Australia

Kohl, J. A. and Papadopoulos, P. M.: 1995, in High Performance Computing Symposium, Montreal, CA

Krishnan, S. and Gannon, D.: 2004, in Proceedings of the 9th International Workshop on High-Level Parallel Pro-

gramming Models and Supportive Environments (HIPS 2004), IEEE Press, Santa Fe, NM, to appear

Kumfert, G.: 2003, Understanding the CCA Specification using Decaf, Technical Report UCRL-MA-145991,

Lawrence Livermore National Laboratory, http://www.llnl.gov/CASC/components/docs.html

Kumfert, G. and Epperly, T.: 2002, Software in the DOE: The Hidden Overhead of “The Build”, Technical Report

UCRL-ID-147343, Lawrence Livermore National Laboratory

Larson, J., Jacob, R., and Ong, E.: 2004a, Model Coupling Toolkit, http://www.mcs.anl.gov/mct/

Larson, J. W., Jacob, R. L., Foster, I. T., and Guo, J.: 2001, in V. N. A. andJ. J. Dongarra, B. A. Juliano, R. S. Renner,

and C. J. K. Tan (eds.), Proceedings of the International Conference on Computational Science (ICCS) 2001, Vol.

2073 of Lecture Notes in Computer Science, pp 185–194, Springer-Verlag, Berlin

Larson, J. W., Norris, B., Ong, E. T., Bernholdt, D. E., Drake, J. B., Elwasif, W. R., Ham, M. W., Rasmussen, C. E.,

Kumfert, G., Katz, D. S., Zhou, S., DeLuca, C., and Collins, N. S.: 2004b, in 84th American Meteorological

Society Annual Meeting, American Meteorological Society, Seattle, Washington

Larson, J. W., Rasmussen, C. E., Volberg, O., Ong, E. T., and Jacob, R. L.: 2004c, From Large Coupled Model to a

Component-based Application: Building Bridges between the Model Coupling Toolkit, the Earth System Modeling

Framework, and the Common Component Architecture, manuscript in perparation

Lawrence Livermore National Laboratory: 2004, Babel homepage, http://www.llnl.gov/CASC/

A Component Architecture for HPC 72

components/babel.html

Lee, J. and Sussman, A.: 2004, Efficient Communication Between Parallel Programs with InterComm, Technical

Report CS-TR-4557 and UMIACS-TR-2004-04, University of Maryland, Department of Computer Science and

UMIACS, A shortened version submitted to HPDC-13

Lefantzi, S., Kennedy, C., Ray, J., and Najm, H.: 2003a, in Proceedings of the Fall Meeting of the Western States

Section of the The Combustion Institute, Los Angeles, California, Distributed via CD-ROM

Lefantzi, S. and Ray, J.: 2003, in Proceedings of the Second MIT Conference on Computational Fluid and Solid

Mechanics, June 17-20, 2003, Cambridge, MA, Vol. 2, pp 1401–1405, Elsevier

Lefantzi, S., Ray, J., and Najm, H. N.: 2003b, in Proceedings of the 17th International Parallel and Distributed

Processing Symposium (IPDPS 2003), 22-26 April 2003, Nice, France, IEEE Computer Society, Distributed via

CD-ROM

Lewis, M., Ferrari, A., Humphrey, M., Karpovich, J., Morgan, M., Natrajan, A., Nguyen-Tuong, A., Wasson, G., and

Grimshaw, A.: 2003, Journal of Parallel and Distributed Computing 63, 525

Liberty, J.: 2003, Learning Visual Basic .NET, O’Reilly and Associates

Malony, A. D. and Shende, S.: 2000, Distributed and Parallel Systems: From Concepts to Applications, Chapt.

Performance Technology for Complex Parallel and Distributed Sys tems, pp 37–46, Kluwer, Norwell, MA

Meyer, B.: 1997, Object-Oriented Software Construction, Prentice Hall, Upper Saddle River, New Jersey 07458

Microsoft Corporation: 1999, Component Object Model Specification, http://www.microsoft.com/com/

resources/comdocs.asp

Najm, H. N. et al.: 2003, CFRFS homepage, http://cfrfs.ca.sandia.gov/

Nieplocha, J., Harrison, R. J., and Littlefield, R. J.: 1996, J. Supercomputing 10(2), 169

Norris, B., Balay, S., Benson, S., Freitag, L., Hovland, P., McInnes, L., and Smith, B.: 2002, Parallel Computing

28(12), 1811

Norris, B., Ray, J., Armstrong, R., McInnes, L. C., Bernholdt, D. E., Elwasif, W. R., Malony, A. D., and Shende,

S.: 2004, Computational Quality of Service for Scientific Components, Submitted to International Symposium on

Component-Based Software Engineering (CBSE7), Edinburgh, Scotland

Object Management Group: 2002, CORBA Component Model, http://www.omg.org/technology/

A Component Architecture for HPC 73

documents/formal/components.htm

Ong, E., Larson, J., and Jacob, R.: 2002, in C. J. K. Tan, J. J. Dongarra, A. G. Hoekstra, and P. M. A. Sloot

(eds.), Proceedings of the 2002 International Conference on Computational Science, Vol. 2330 of Lecture Notes

in Computer Science, pp 748–757, Springer-Verlag, Berlin

OpenLDAP Foundation: 2003, Lightweight Directory Access Protocol, http://www.openldap.org/

Pacific Northwest National Laboratory: 2004a, Global Array Toolkit homepage, http://www.emsl.pnl.gov:

2080/docs/global/

Pacific Northwest National Laboratory: 2004b, NWChem homepage, http://www.emsl.pnl.gov/docs/

nwchem/

Parashar, M. et al.: 2004, GrACE homepage, http://www.caip.rutgers.edu/˜parashar/TASSL/

Projects/GrACE/

Parker, S. G. and Johnson, C. R.: 1995, in Supercomputing ‘95, IEEE Press

Parker, S. G., Weinstein, D. M., and Johnson, C. R.: 1997, in E. Arge, A. Bruaset, and H. Langtangen (eds.), Modern

Software Tools in Scientific Computing, pp 1–44, Birkhauser Press

Ranganathan, M., Acharya, A., Edjlali, G., Sussman, A., and Saltz, J.: 1996, in Proceedings of the 1996 International

Conference on Supercomputing, Philadelphia, PA

Rasmussen, C. E., Lindlan, K. A., Mohr, B., and Striegnitz, J.: 2001, in 2001 LACSI Symposium

Rasmussen, C. E., Sottile, M. J., Shende, S. S., and Malony, A. D.: 2003, Bridging the Language Gap in Scientific

Computing: The CHASM Approach, Technical Report LA-UR-03-3057, Advanced Computing Laboratory, Los

Alamos National Laboratory

Ray, J., Kennedy, C., Lefantzi, S., and Najm, H.: 2003a, in Proceedings of the Third Joint Meeting of the U.S. Sections

of The Combustion Institute, March 16-19, 2003, Chicago, Illinois., Distributed via CD-ROM

Ray, J., Trebon, N., Shende, S., Armstrong, R. C., and Malony, A.: 2003b, Performance Measurement and Modeling

of Component Applications in a High Performance Computing Environment: A Case Study, Technical Report

SAND2003-8631, Sandia National Laboratory, Livermore, CA, Accepted, International Parallel and Distributed

Computing Symposium, 2004, Santa Fe, NM

Reynders, J. et al.: 2001, POOMA, http://www.codesourcery.com/pooma/pooma

A Component Architecture for HPC 74

Reynders, J. V. W., Cummings, J. C., Hinker, P. J., Tholburn, M., S. Banerjee, M. S., Karmesin, S., Atlas, S., Kea-

hey, K., and Humphrey, W. F.: 1996, POOMA: A FrameWork for Scientific Computing Applications on Parallel

Architectures, Chapt. 14, MIT Press

Roman, E.: 1997, Mastering Enterprise JavaBeans, O’Reilly and Associates

Sandia National Laboratories: 2004, MPQC homepage, http://aros.ca.sandia.gov/˜cljanss/mpqc/

Schmidt, D. C., Pyarali, I., and Harrison, T.: 1996, USENIX Computing Systems 9(4)

Schmidt, D. C., Vinoski, S., and Wang, N.: 1999, C++ Report 11(9)

Shende, S., Malony, A. D., Rasmussen, C., and Sottile, M.: 2003, in Proceedings of International Workshop on Per-

formance Modeling, Evaluation and Optimization, International Parallel and Distributed Processing Symposium

Slominski, A., Govindaraju, M., Gannon, D., and Bramley, R.: 2001, in Proceedings of the International Conference

on Parallel and Distributed Processing Techniques and Applications, pp 1661–1667

Smith, R. D., Dukowicz, J. K., and Malone, R. C.: 1992, Physica D 60(38)

Sportisse, B.: 2000, J. Comp. Phys. 161, 140

Strang, G.: 1968, SIAM J. Numer. Anal. 5(3), 506

Sun Microsystems: 2004a, Enterprise JavaBeans Downloads and Specifications, http://java.sun.com/

products/ejb/docs.html

Sun Microsystems: 2004b, Java Remote Method Invocation (Java RMI), http://java.sun.com/products/

jdk/rmi/

Szyperski, C.: 1999, Component Software: Beyond Object-Oriented Programming, ACM Press, New York

U. S. Dept. of Energy: 2003, SciDAC Initiative homepage, http://www.osti.gov/scidac/

UDDI.org: 2003, Universal Description Discovery and Integration of Business for the Web (UDDI), http://www.

uddi.org/specification.html

University Corporation for Atmospheric Research: 2004, The Community Atmosphere Model (CAM) homepage,

http://www.ccsm.ucar.edu/models/atm-cam/

University of Oregon: 2003, TAU: Tuning and Analysis Utilities, http://www.cs.uoregon.edu/research/

paracomp/tau/

von Laszewski, G., Foster, I., Gawor, J., and Lane, P.: 2001, in Concurrency and Computation: Practice and Experi-

A Component Architecture for HPC 75

ence, Vol. 13(8-9), pp 643–662

Wehner, M. F., Mirin, A. A., Eltgroth, P. G., Dannevik, W. P., Mechoso, C. R., Farrara, J., and Spahr, J. A.: 1995, J.

Parallel Comp. 21, 1655

Wilde, T., Kohl, J. A., and Flanery, Jr., R. E.: 2002, in International Conference on Computational Science (2), pp

864–873, Amsterdam, The Netherlands

Wilde, T., Kohl, J. A., and Flanery, Jr., R. E.: 2003, Future Gener. Comput. Syst. 19(5), 701

Zhang, K., Damevski, K., Venkatachalapathy, V., and Parker, S.: 2004, in Proceedings of the 9th International

Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS 2004), IEEE Press,

Santa Fe, NM, to appear

Zhou, S.: 2003, Coupling Earth System Models: An ESMF-CCA Prototype, http://webserv.gsfc.nasa.

gov/ESS/esmf_tasc/

Zhou, S., da Silva, A., Womack, B., and Higgins, G.: 2003, in NASA Earth Science Technology Conference 2003,

College Park, MD, http://esto.nasa.gov/conferences/estc2003/papers/A4P3(Zhou).pdf

